Current Understanding and Translational Prospects of Tetrahedral Framework Nucleic Acids.

JACS Au

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tetrahedral framework nucleic acids (tFNAs) represent a promising advancement in nucleic acid nanotechnology due to their unique structural properties, high biocompatibility, and multifaceted biomedical applications. Constructed through a one-pot annealing method, four single-stranded DNAs self-assemble into stable, three-dimensional tetrahedral nanostructures with enhanced mechanical robustness and physiological stability, resisting enzymatic degradation. Their ability to permeate mammalian cells without transfection agents, coupled with modifiable surfaces, positions tFNAs as versatile carriers for drug and gene delivery systems. The tFNA-based platforms exhibit superior therapeutic efficacy, including antioxidative and anti-inflammatory effects, alongside efficient cellular uptake and tissue penetration. These features underpin their role in precision medicine, enabling targeted delivery of diverse therapeutic agents such as synthetic compounds, peptides, and nucleic acids. Additionally, tFNAs demonstrate significant potential in regenerative medicine, immune modulation, antibacterial strategies, and oncology. By addressing challenges in translational integration, tFNAs stand poised to accelerate the development of biomedical research and clinical applications, fostering novel therapies and enhancing therapeutic outcomes across a wide spectrum of diseases. This Perspective thoroughly details the unique attributes and diverse applications of tFNAs and critically evaluates tFNAs' clinical translational potential, outlining inherent implementation challenges and exploring potential solutions to these obstacles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11862954PMC
http://dx.doi.org/10.1021/jacsau.4c01170DOI Listing

Publication Analysis

Top Keywords

nucleic acids
12
tetrahedral framework
8
framework nucleic
8
tfnas
5
current understanding
4
understanding translational
4
translational prospects
4
prospects tetrahedral
4
nucleic
4
acids tetrahedral
4

Similar Publications

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Introduction: The definition of Leber's hereditary optic neuropathy (LHON) does not take into account a preclinical phase during which the thickness of retinal nerve fiber layer (RNFL) is increased, prior to optic nerve atrophy, reducing the chances of visual recovery.

Objectives: Search for a metabolomic signature characterizing this preclinical phase and identify biomarkers predicting the risk of LHON onset.

Methods And Results: The blood and tear metabolomic profiles of 90 asymptomatic LHON mutation carriers followed for one year will be explored as a function of RNFL thickness and compared to those of a healthy control.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.

View Article and Find Full Text PDF

Niabella insulamsoli sp. nov., Isolated From Soil and Showing Potential Cosmetic Functions with Flexirubin Extract.

Curr Microbiol

September 2025

Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.

A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.

View Article and Find Full Text PDF