98%
921
2 minutes
20
ConspectusIn contrast to precious transition metals, such as palladium and rhodium, the development of novel chiral ligands for enantioselective C-H functionalizations catalyzed by earth-abundant, cost-effective, and environmentally friendly 3d metals poses substantial challenges, primarily due to the variable oxidation states, intricate coordination patterns, and limited mechanistic insights. In this Account, we summarize our research endeavors in the development of three novel types of Co(III) catalysis: pseudotetrahedral achiral Cp*Co(III)/chiral carbonyl acid (CCA) catalysis, -generated chiral octahedral cobalt(III) via cobalt/salicyloxazoline (Salox) catalysis, and Co(II)/chiral phosphoric acid (CPA) cooperative catalysis, achieved through strategic chiral ligand design. Our initial objective was to achieve enantioselective C-H functionalization catalyzed by achiral Cp*Co(III) catalysts with external chiral ligands, aiming to circumvent the laborious preparation of chiral CpCo(III) complexes. To this end, we developed several CCA ligands, incorporating non-covalent interactions (NCIs) as a crucial design element. Next, to address the limitations associated with the lengthy synthesis of Cp-ligated Co(III) complexes and the difficulties of modification, we explored the concept of the generation of Co(III) catalysis using commercially available cobalt(II) salts with tailor-made chiral ligands. This exploration led to the development of two innovative catalytic systems, namely, Co(II)/Salox catalysis and Co(II)/CCA sequential catalysis. The Co(II)/Salox catalysis emerged as a versatile strategy, demonstrating excellent enantioselectivities across a range of asymmetric C-H functionalization reactions to construct various chiral molecules with central, axial, planar, and inherent chirality. The facile synthesis in a single step, along with ease of modification, further enhances the versatility and applicability of this approach. Moreover, we successfully applied cobalt/Salox catalysis in electro- and photochemical-catalyzed enantioselective C-H functionalization, using electrons or oxygen as traceless oxidant, thereby eliminating the need for stoichiometric chemical oxidants. Through mechanistic studies and reaction developments, we elucidated the detailed ligand structure-enantioselectivity relationships in cobalt/Salox catalysis, which are expected to inform future research endeavors. Finally, the Co(II)/CPA cooperative catalysis enabled the synthesis of chiral spiro-γ-lactams through sequential C-H olefination/asymmetric [4 + 1] spirocyclization. Mechanistically, the establishment of stereochemistry occurs during the cyclization step, where the CPA ligand serves as both a neutral ligand and a chiral Brønsted acid, with stereoinduction independent of the C-H cleavage step. We anticipate that the insights and advancements detailed in this Account will inspire further innovations in ligand development and drive progress in the exploration of 3d metal-catalyzed asymmetric C-H functionalization reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.5c00013 | DOI Listing |
Org Biomol Chem
September 2025
Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu - Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
A regioselective C2-alkynylation of indoles ruthenium(II)-catalyzed C-H activation using bromoalkynes is demonstrated under both solution-phase and mechanochemical conditions. The solvent-minimized mechanochemical method delivers comparable yields with reduced reaction time and improved green metrics. Broad substrate scope, gram-scale applicability, and post-functionalization showcase the synthetic utility of this approach.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Antiviral Drugs, Tianjian Laboratory of Advanced Biomedical Sciences, Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
The C-H functionalization represents a universal and important method for constructing new C-C bonds by carrying out reactions directly on inert C-H bonds. The major challenges are to control the site-selectivity and chemoselectivity because most complex organic compounds have many similar C-H bonds or different functional groups, such as a C═C bond or O-H bond. Here, we develop a versatile copper cluster (CuNC) with high stability and dynamic catalytic sites.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, United Kingdom.
The development of copper-catalyzed C-H functionalization processes is challenging due to the inefficiency of conventional chemical oxidants in regenerating the copper catalyst. This study details the development of a mediated electrosynthetic approach involving triple catalytic cycles in transient C-H functionalization to achieve efficient copper-catalyzed C-(sp)-H sulfonylation of benzylamines with sodium sulfinate salts. The triple catalytic system consists of a copper organometallic cycle for C-H functionalization, an aldehyde transient directing group (TDG) as an organocatalyst for imine formation, and a ferrocenium salt as an electrocatalyst.
View Article and Find Full Text PDFChem Sci
August 2025
Freie Universität Berlin, Institute of Chemistry and Biochemistry, Organic Chemistry Takustr. 3 14195 Berlin Germany
We describe a photomediated protocol for the trifluoromethoxylation of benzylic, aldehydic, and non-activated C-H bonds, using bis(trifluoromethyl)peroxide (BTMP, (FCO)) as the key reagent. Under catalyst-free conditions in acetone, this reaction proceeds with selective functionalization of benzylic methylene groups. Furthermore, by using tetrabutylammonium decatungstate as a photocatalyst, the scope extends to include both non-activated methylene C(sp)-H and formyl C(sp)-H bonds.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
An efficient synthesis and late-stage C-H functionalization of papaverine under volatile solvent-free conditions are reported. This methodology demonstrates significant potential for applications in the active pharmaceutical ingredient (API) industry, particularly for the sustainable and solvent-free synthesis of papaverine. A plausible reaction mechanism was meticulously elucidated through comprehensive control experiments.
View Article and Find Full Text PDF