98%
921
2 minutes
20
Preclinical diffusion MRI (dMRI) has proven value in methods development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages that facilitate high spatial resolution and high SNR images, cutting-edge diffusion contrasts, and direct comparison with histological data as a methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work concludes a three-part series of recommendations and considerations for preclinical dMRI. Herein, we describe best practices for dMRI of ex vivo tissue, with a focus on image pre-processing, data processing, and comparisons with microscopy. In each section, we attempt to provide guidelines and recommendations but also highlight areas for which no guidelines exist (and why), and where future work should lie. We end by providing guidelines on code sharing and data sharing and point toward open-source software and databases specific to small animal and ex vivo imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971500 | PMC |
http://dx.doi.org/10.1002/mrm.30424 | DOI Listing |
Magn Reson Med
September 2025
Department of Biomedical Engineering, University of California, Davis, Davis, California, USA.
Purpose: This study sought to determine the intrasession repeatability of the diffusion-weighted (DW) arterial spin labeling (ASL) sequence at different postlabel delays (PLDs).
Methods: We first performed numerical simulations to study the accuracy of the two-compartment water exchange rate (Kw) fitting model with added Gaussian noise for DW PLDs at 1500, 1800, and 2100 ms. Ten young, healthy participants then underwent a structural T scan and two intrasession in vivo DW ASL scans at each PLD on a 3T MRI.
Magn Reson Med
September 2025
Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
Purpose: To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, whole-head angiograms.
Methods: A novel few-shot learning-based reconstruction framework is proposed, featuring a 3D variational network specifically designed for 3D TOF-MRA that is pre-trained on simulated complex-valued, multi-coil raw k-space datasets synthesized from diverse open-source magnitude images and fine-tuned using only two single-slab experimentally acquired datasets. The proposed approach was evaluated against existing methods on acquired retrospectively undersampled in vivo k-space data from five healthy volunteers and on prospectively undersampled data from two additional subjects.
Magn Reson Med
September 2025
Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
Purpose: To develop and evaluate a volumetric proton resonance frequency shift (PRF)-based thermometry method for monitoring thermal ablation in moving tissues.
Methods: A golden-angle-ordered 3D stack-of-radial MRI sequence was combined with an image-navigated multi-baseline (iNAV-MB) PRF method to reconstruct motion-compensated 3D temperature maps with high spatiotemporal resolution and volumetric coverage. Two radial MRI reconstruction techniques, k-space weighted image contrast filter (KWIC) and golden-angle radial sparse parallel (GRASP) MRI, were implemented and compared within a sliding window reconstruction framework.
Magn Reson Med
September 2025
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Purpose: To develop and validate a fast, motion-robust, free-breathing abdominal 3D T1ρ mapping method by combining variable-density diamond radial k-space sampling with fast-MAPSS (magnetization-prepared angle-modulated partitioned-k-space spoiled gradient-echo snapshots).
Methods: 3D MAPSS T1ρ imaging was performed at 3T using five spin-lock time (TSL) pairs in phantom scans and three TSL pairs in nine healthy volunteers. Phantom experiments compared Cartesian sampling (reference) with stack-of-stars and diamond radial sampling.
Stem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDF