Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
is a major swine pathogen, classified into 19 serotypes based on capsular polysaccharide (CPS) loci. This study aimed to improve the diagnostic method to differentiate between serotypes 9 and 11, which are challenging to distinguish using conventional serological and molecular methods. A novel qPCR assay based on locked nucleic acid (LNA) probes was developed and validated using a collection of reference strains representing all known 19 serotypes. The assay demonstrated specificity in detecting the nucleotide variation characteristic of the serotype 9 reference strain. However, the analysis of a clinical isolate collection identified discrepancies between LNA-qPCR and serological results, prompting further investigation of the and O-Ag loci. Subsequent nanopore sequencing and whole-genome sequencing of a collection of 31 European clinical isolates, previously identified as serotype 9, 11, or undifferentiated 9/11, revealed significant genetic variations in the and O-Ag loci. Ten isolates had a sequence identical to that of the serotype 11 reference strain, while six isolates had single-nucleotide polymorphisms that were unlikely to cause significant coding changes. In contrast, 15 isolates had interruptions in the gene, distinct from that found in the serotype 9 reference strain, potentially leading to a serotype 9 CPS structure. In the O-Ag loci, differences between serotypes 9 and 11 were minimal, although some isolates had mutations potentially affecting O-Ag expression. Overall, these findings suggest that multiple genetic events can lead to the formation of a serotype 9 CPS structure, hindering the development of a single qPCR assay capable of detecting all gene mutations. Our results suggest that, currently, a comprehensive analysis of the gene is necessary to accurately determine whether the capsule of an isolate corresponds to serotype 9 or 11. Although such analyses are feasible with the advent of third-generation sequencing technologies, their accessibility, cost, and time to result limit their use in routine diagnostic applications. Under these circumstances, the designation of the hybrid serovar 9/11 remains a valid approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858502 | PMC |
http://dx.doi.org/10.3390/microorganisms13020280 | DOI Listing |