Quick In Vitro Screening of PGPMs for Salt Tolerance and Evaluation of Induced Tolerance to Saline Stress in Tomato Culture.

Microorganisms

Plants and Pathogens Group, Research Institute Land Nature Landscape, HEPIA Geneva School of Engineering Architecture and Landscape, HES-SO University of Applied Sciences and Arts Western Switzerland, 150 Route de Presinge, 1254 Jussy, Switzerland.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil salinity, affecting 20-50% of irrigated farmland globally, poses a significant threat to agriculture and food security, worsened by climate change and increasing droughts. Traditional methods for managing saline soils-such as leaching, gypsum addition, and soil excavation-are costly and often unsustainable. An alternative approach using plant growth-promoting microorganisms (PGPMs) offers promise for improving crop productivity in saline conditions. This study tested twenty-three bacterial strains, one yeast, and one fungal strain, isolated from diverse sources including salicornia plants, sandy soils, tomato stems or seeds, tree leaves, stems, and flowers. They were initially submitted to in vitro selection tests to assess their ability to promote plant growth under salt stress. In vitro tests included auxin production, phosphate solubilization, and co-culture of microorganisms and tomato seedlings in salt-supplemented media. The sp. strain 44 showed the highest auxin production, while MJ had the strongest phosphate solubilization ability. sp. STSD 4 and (4)10-1(iso1) promoted germination and the growth of tomato seedlings in an in vitro co-culture test performed on a salt-enriched medium. This innovative test proved particularly effective in selecting relevant strains for in planta trials. The microorganisms that performed best in the various in vitro tests were then evaluated in vivo on tomato plants grown in greenhouses. The results showed significant improvements in growth, including increases in fresh and dry biomass and stem size. Among the strains tested, (4)10-1(iso1) stood out, delivering an increase in fresh biomass of 94% in comparison to the negative control of the salt modality. These findings highlight the potential of specific PGPM strains to enhance crop resilience and productivity in saline soils, supporting sustainable agricultural practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857634PMC
http://dx.doi.org/10.3390/microorganisms13020246DOI Listing

Publication Analysis

Top Keywords

productivity saline
8
vitro tests
8
auxin production
8
phosphate solubilization
8
tomato seedlings
8
tomato
5
quick vitro
4
vitro screening
4
screening pgpms
4
pgpms salt
4

Similar Publications

Purpose: This study evaluated how the formation of various types of precipitates affects the accuracy of electronic apex locators in determining the working length.

Methods: Two hundred and forty extracted human maxillary incisors were selected. A total of eight groups were used: four groups (n = 30) for the application of different irrigants; saline, sodium hypochlorite (5.

View Article and Find Full Text PDF

Alteration in hippocampal mitochondria ultrastructure and cholesterol accumulation linked to mitochondrial dysfunction in the valproic acid rat model of autism spectrum disorders.

Psychopharmacology (Berl)

September 2025

Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.

Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.

View Article and Find Full Text PDF

Crab shell polypeptides enhance calcium dynamics and osteogenic activity in osteoporosis.

Front Pharmacol

August 2025

Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.

Background: Osteoporosis (OP) is a chronic, systemic skeletal disorder characterized by progressive bone loss and microarchitectural deterioration, which increases fracture susceptibility and presents a challenging set of global healthcare problems. Current pharmacological interventions are limited by adverse effects, high costs, and insufficient long-term efficacy. Here, we identify snow crab shell-derived polypeptides (SCSP) as a potent osteoprotective agent.

View Article and Find Full Text PDF

Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria and to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations.

View Article and Find Full Text PDF

Objectives: To investigate the role of a neural pathway from oxytocin (OXT) neurons in the hypothalamic paraventricular nucleus (PVN) to γ-aminobutyric acid (GABA) neurons in the trigeminal nucleus caudalis (TNC) in regulating pain sensitization in a mouse model of chronic migraine and to explore the underlying mechanisms.

Methods: A chronic migraine model was established by intraperitoneal injection of nitroglycerin (NTG, 10 mg/kg) on days 1, 3, 5, 7, and 9. The study consisted of four parts: PartⅠ: Wild-type C57BL/6J mice were divided into 4 groups (=6 in each), receiving single or repeated injection of NTG or saline, respectively.

View Article and Find Full Text PDF