98%
921
2 minutes
20
The objectives of the study were to design, synthesize, and evaluate the antibacterial activity of a series of novel aminoguanidine-indole derivatives. Thirty-seven new compounds were effectively synthesized through nucleophilic substitution reaction and guanidinylation reaction. Chemical structures of all the desired compounds were identified by NMR and HR-MS spectroscopy. Most of the synthesized compounds showed significant antibacterial activity against ESKAPE pathogens and clinical resistant () isolates. is an important opportunistic pathogen that often threatens the health of immunocompromised people such as the elderly, children, and ICU patients. The most active compound showed rapid bactericidal activity against resistant 2108 with MIC and MBC values that were 4 and 8 µg/mL, respectively. The hemolytic activity of was low, with an HC value of 123.6 µg/mL. Compound induced the depolarization of the bacterial membrane and disrupted bacterial membrane integrity and was not prone to antibiotic resistance. The dihydrofolate reductase (DHFR) activity was also notably inhibited by in vitro. Molecular docking revealed that the aminoguanidine moiety and indole structure of played an important role in binding to the target site of the dihydrofolate reductase (DHFR) receptor. In the mouse pneumonia model caused by , improved the survival rate of mice, reduced bacterial loads, and alleviated tissues' pathological injuries at a dosage of 4 mg/kg. Therefore, compound may be a promising lead compound or drug candidate for antibacterial purposes against .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858076 | PMC |
http://dx.doi.org/10.3390/molecules30040887 | DOI Listing |
Neotrop Entomol
September 2025
College of Optometry, University of Houston, Houston, TX, USA.
Lucilia sericata (Meigen, 1826) maggot excretions/secretions (ES) have demonstrated anti-inflammatory and wound healing potential on corneal epithelial cells. This study aimed to evaluate the in vitro antibacterial potential of the ES against clinically relevant Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus epidermidis in the presence of human tear fluid. The ES was collected from sterile first- and second-instar L.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
September 2025
Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
In screening for antibacterial agents from co-cultures of Mycobacterium smegmatis and microbial resources, such as actinomycetes and fungi, the known hydroxyquinone antibiotic griseorhodin A (1) was isolated from a co-culture of actinomycete strain TMPU-20A002 and M. smegmatis. Compound 1 exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE), with minimum inhibitory concentrations of 0.
View Article and Find Full Text PDFPhytochemistry
September 2025
Plant Protection Institute, HUN-REN Centre for Agricultural Research, Fehérvári út 132-144, 1116 Budapest, Hungary. Electronic address:
The demand for previously undescribed antimicrobial agents is increasing due to the emergence of resistant plant pathogens. One of the untapped sources of new biopesticides is the plant kingdom. A bioassay-guided process comprising TLC-Bacillus subtilis bioassay, TLC-MS, and preparative flash column chromatography enabled the isolation of five previously undescribed antimicrobial labdane diterpenes (graminifolins A-E, 1-5) from the flower extract of grass-leaved goldenrod (Euthamia graminifolia, formerly Solidago graminifolia).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China. Electronic address:
Tumor surgery often leads to tumor residue, tissue defects, and drug-resistant bacterial infections, resulting in high recurrence rates and chronic wounds. In this study, an injectable hydrogel was synthesized using glycidyl trimethyl ammonium chloride-chitosan (GCh) and formylbenzoic acid-modified chrysomycin A (CA)-loaded F127 micelles (F127FA-CA). The formation of the hydrogel is achieved through Schiff base conjugation, which occurs between the amino groups present in GCh and the aldehyde groups located on the micelle surfaces.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. Electronic address:
The development of effective hemostatic and antibacterial dressings remains a critical challenge in wound management. We report the design and fabrication of novel porous composite hydrogels composed of carboxymethyl cellulose (CMC), silica (SiO), and zinc oxide nanoparticles (ZnO NPs) . The incorporation of SiO and ZnO NPs into the CMC hydrogel matrix resulted in a unique multi-scale porous structure, characterized by interconnected holes of various sizes, which significantly enhanced the hydrogel's liquid absorption capacity and mechanical strength.
View Article and Find Full Text PDF