Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Colorectal cancer is one of the most common malignant tumors worldwide, significantly impacting human health. Cantharidin (CTD), an active compound derived from the Spanish fly, exhibits antitumor properties. Its derivative, norcantharidin (NCTD), is synthesized by removing methyl groups from positions 1 and 2 of cantharidin. NCTD has demonstrated lower toxicity while maintaining similar antitumor effects compared to CTD. However, the mechanism by which NCTD exerts its effects against colorectal cancer remains unclear. Here, we conducted a comprehensive analysis of the effects of NCTD on colorectal cancer both in vitro and in vivo. Whole-transcriptome sequencing and bioinformatics tools were employed to identify potential key targets of NCTD in the treatment of colorectal cancer. Additionally, we designed folate-receptor-targeting NCTD liposomes (FA-NCTD) and assessed their anticancer efficacy in vivo. NCTD effectively inhibited cell viability, clonal formation, and migration in HCT116 and HT-29 cell lines. NCTD also induced apoptosis, influenced the cell cycle, altered mitochondrial membrane potential, and increased reactive oxygen species levels. The whole-transcriptome sequencing and bioinformatics analysis identified TRAF5 as a key target for NCTD's action against colorectal cancer. Furthermore, NCTD was found to regulate the TRAF5/NF-κB signaling pathway in both HCT116 and HT-29 cells. The FA-NCTD liposomes demonstrated effective tumor targeting and significantly inhibited tumor growth in vivo. This result showed that NCTD effectively suppresses the malignant proliferation of colon cancer cells by modulating the TRAF5/NF-κB signaling pathway and inducing programmed apoptosis, thereby offering a novel strategy for colorectal cancer treatment. The prepared FA-NCTD liposomes provide a promising approach for achieving the precise targeting and controlled release of NCTD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855010 | PMC |
http://dx.doi.org/10.3390/ijms26041450 | DOI Listing |