98%
921
2 minutes
20
Bond rotation is an important phenomenon governing the fate of reactions. In particular, heterogeneously substituted ethane derivatives provide distinct structural conformations around the bond, empowering them as ideal systems for studying the rotation along carbon-containing single bonds. However, structural dynamics of ultrafast single-bond rotation, especially along C-C• bonds, have remained elusive as tracking the detailed changes in structural parameters during the rotational isomerization is challenging with conventional spectroscopic tools. Here, we employ femtosecond time-resolved X-ray liquidography to visualize the rotational isomerization between anti and gauche conformers of tetrafluoroiodoethyl radical (CFI•) and 1,2-tetrafluorodiiodoethane (CFI), simultaneously. The TRXL data captures perturbations in conformer ratios and structures of each reacting species, revealing that the rotational isomerization of CFI• and CFI follows anti-to-gauche and gauche-to-anti paths with time constants of 1.2 ps and 26 ps, respectively. These findings also align with the computational predictions. This work offers an atomic-level insight into the kinetics and structural dynamics of single-bond rotation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861307 | PMC |
http://dx.doi.org/10.1038/s41467-025-57279-7 | DOI Listing |
Sci China Life Sci
September 2025
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Diurnal floret opening and closure (DFOC) is essential for rice reproductive development and hybrid breeding, yet transcriptional dynamics and underlying regulatory networks remain poorly characterized. Here, we conducted high-temporal-resolution transcriptomic analyses of lodicules to dissect DFOC regulatory networks in two japonica rice cultivars. Analysis of differentially expressed genes (DEGs) uncovered core genes shared by both cultivars, primarily associated with jasmonic acid (JA) signaling and cell wall remodeling.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2025
Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Research conducted over the last 15 years indicates that cAMP is generated not just from the plasma membrane but also from intracellular compartments, particularly in endosomes, where receptors are redistributed during the endocytosis process. This review centers on the parathyroid hormone type 1 receptor (PTHR) as a model for a peptide hormone GPCRs that generates cAMP from various locations with distinct duration and pharmacological effectiveness. We discuss how structural dynamics simulations aid in designing ligands that induce cAMP location bias, ultimately answering how the spatiotemporal generation of cAMP affects pharmacological responses mediated by the PTHR.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2025
Tsinghua University, Beijing, China.
The μ-opioid receptor (μOR) is the primary drug target of opioid analgesics such as morphine and fentanyl. Activation of μORs in the central nervous system inhibits ascending pain signaling to the cortex, thereby producing analgesic effects. However, the clinical use of opioid analgesics is severely limited by adverse side effects, including respiratory depression, constipation, addiction, and the development of tolerance.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Mechanical Engineering Department KVGIT Jaipur, Rajasthan, India.
Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.
View Article and Find Full Text PDFJ Neurosci
September 2025
Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine; Budapest, Hungary
The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.
View Article and Find Full Text PDF