Shiba: a versatile computational method for systematic identification of differential RNA splicing across platforms.

Nucleic Acids Res

Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alternative pre-mRNA splicing (AS) is a fundamental regulatory process that generates transcript diversity and cell type variation. We developed Shiba, a comprehensive method that integrates transcript assembly, splicing event identification, read counting, and differential splicing analysis across RNA-seq platforms. Shiba excels in capturing annotated and unannotated AS events with superior accuracy, sensitivity, and reproducibility. It addresses the often-overlooked issue of junction read imbalance, significantly reducing false positives to aid target prioritization and downstream analyses. Unlike other tools that require large numbers of biological replicates or resulting in low sensitivity and high false positives, Shiba's statistics framework is agnostic to sample size, as demonstrated by simulated data and its effective application to real n= 1 RNA-seq datasets. To extend its utility to single-cell RNA-seq, we developed scShiba, which applies Shiba's pseudobulk approach to analyze splicing at the cluster level. scShiba successfully revealed AS regulation in developmental dopaminergic neurons and differences between excitatory and inhibitory neurons. Both Shiba and scShiba are available in Docker/Singularity containers and Snakemake pipelines, ensuring reproducibility. With their comprehensive capabilities, Shiba and scShiba enable systematic quantification of alternative splicing events across various platforms, laying a solid foundation for mechanistic exploration of the functional complexity in RNA splicing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851117PMC
http://dx.doi.org/10.1093/nar/gkaf098DOI Listing

Publication Analysis

Top Keywords

rna splicing
8
false positives
8
shiba scshiba
8
splicing
7
shiba
5
shiba versatile
4
versatile computational
4
computational method
4
method systematic
4
systematic identification
4

Similar Publications

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.

View Article and Find Full Text PDF

A clinical and genotype-phenotype analysis of MACF1 variants.

Am J Hum Genet

September 2025

Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.

Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.

View Article and Find Full Text PDF

RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.

View Article and Find Full Text PDF

Clusters of deep intronic RbFox motifs embedded in large assembly of splicing regulators sequences regulate alternative splicing.

PLoS Genet

September 2025

Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America.

The RbFox RNA binding proteins regulate alternative splicing of genes governing mammalian development and organ function. They bind to the RNA sequence (U)GCAUG with high affinity but also non-canonical secondary motifs in a concentration dependent manner. However, the hierarchical requirement of RbFox motifs, which are widespread in the genome, is still unclear.

View Article and Find Full Text PDF