A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Artificial intelligence-assisted enhancement of prostate volume metrics in the diagnosis of clinically significant prostate cancer: a retrospective analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Although artificial intelligence (AI) algorithms provide reliable prostate volume (PV) measurements across various magnetic resonance imaging devices, their impact on prostate cancer risk stratification for patients with a Gleason score of 6 remains unclear. This study aimed to evaluate the benefits of integrating AI-derived PV and transitional or peripheral zone volume (TZV/PZV) measurements with clinical factors to improve prostate-cancer risk stratification.

Methods: Our retrospective cohort included 560 patients with biopsy-confirmed Gleason score 6, stratified based on the outcome of radical prostatectomy as clinically significant prostate cancer (csPC) and clinically insignificant prostate cancer (insPC). We used AI methods for accurate PV and TZV/PZV estimation based on the origin virtual net (Vnet) and with cascade (coarse and fine) Vnet, the best-performing volume segmentation network in the subsequent analysis. We then developed predictive models incorporating clinical factors including age, prostate serum antigen levels, Prostate Imaging Reporting and Data System, positivity in transitional-zone or peripheral-zone biopsy, number of positive cores (foundational model), and novel models integrating PV (model 1) and TZV/PZV (model 2). The efficacy of these models was assessed by the receiver operating characteristic area under the curve (AUC).

Results: For prostate segmentation, the fine cascade Vnet performed best with a Dice similarity coefficient of 0.93 for the whole prostate, 0.82 for the transitional zone, and 0.85 for the peripheral zone. The comparative discriminative power of the three models between csPC and insPC was assessed using the test dataset, indicating an AUC of 0.698 for the foundational model, 0.712 for model 1, and 0.730 for model 2. Model 2 significantly outperformed model 1 (P=0.045) and the foundational model (P=0.005) in distinguishing between csPC and insPC. Model 1 also showed statistically significant improvement over the foundational model (P=0.023).

Conclusions: Incorporating AI-driven PV and TZV/PZV measurements with clinical parameters improves prostate-cancer risk stratification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847177PMC
http://dx.doi.org/10.21037/qims-24-1015DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
foundational model
16
model
11
prostate
10
prostate volume
8
clinically prostate
8
risk stratification
8
gleason score
8
peripheral zone
8
tzv/pzv measurements
8

Similar Publications