Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Ferroptosis, a regulated cell death pathway driven by lipid peroxidation and iron overload, is implicated in neuronal injury caused by hypoxia/reoxygenation (H/R). Caffeine, a widely consumed psychoactive compound, has shown neuroprotective effects in various central nervous system disorders, but its role in regulating ferroptosis remains unclear. This study investigates the neuroprotective effects of caffeine on ferroptosis and its regulation of ACSL4, a key ferroptosis-related protein.

Methods: Molecular docking was performed to evaluate the interaction between caffeine and ferroptosis-related proteins ACSL4 and GPX4. HT-22 cells were subjected to H/R to establish an injury model, followed by treatment with caffeine at varying concentrations. ACSL4 was silenced or overexpressed to explore its role in caffeine-mediated ferroptosis regulation. Cell viability, inflammatory cytokines, ferroptosis markers, and mitochondrial function were assessed.

Results: Molecular docking revealed favorable binding affinities of caffeine with ACSL4 (-5.6 kcal/mol) and GPX4 (-4.6 kcal/mol). Caffeine treatment dose-dependently improved cell viability, reduced TNF-α, IL-1β, and IL-6 levels, and inhibited ferroptosis by downregulating ACSL4 and upregulating GPX4. Overexpression of ACSL4 reversed these protective effects, increasing lipid peroxidation markers (iron, Fe2+, ROS, and MDA) and reducing GSH levels and mitochondrial membrane potential. Conversely, silencing ACSL4 enhanced caffeine's protective effects, confirming its role as a critical target of caffeine-mediated ferroptosis inhibition.

Conclusion: Caffeine protects against H/R-induced neuronal injury by regulating ACSL4-mediated ferroptosis, reducing oxidative stress and inflammation. These findings highlight ACSL4 as a therapeutic target and provide mechanistic insights into caffeine's neuroprotective potential.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01616412.2025.2470714DOI Listing

Publication Analysis

Top Keywords

ferroptosis
9
caffeine
8
lipid peroxidation
8
neuronal injury
8
neuroprotective effects
8
ferroptosis regulation
8
acsl4
8
molecular docking
8
caffeine-mediated ferroptosis
8
cell viability
8

Similar Publications

Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.

View Article and Find Full Text PDF

Purpose: To explore the causal links between antihypertension drugs usage and age-related macular degeneration (AMD).

Methods: Multiple genetic analyses, including summary data-based Mendelian randomization (SMR), traditional MR, and colocalization analysis, were used to explore the causal associations between antihypertension drugs and AMD. Clinical data from the UK Biobank and the National Health and Nutrition Examination Survey (NHANES) was applied to refined risk assessment of specific antihypertensive medications in the context of AMD development.

View Article and Find Full Text PDF

Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin.

View Article and Find Full Text PDF

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

Self-enriching nanozyme with photothermal-cascade amplification for tumor microenvironment-responsive synergistic therapy and enhanced photoacoustic imaging.

Mater Today Bio

October 2025

Yunnan Key Laboratory of Breast Cancer Precision Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, Yunnan, China.

Achieving precise intratumoral accumulation and coordinated activation remains a major challenge in nanomedicine. Photothermal therapy (PTT) provides spatiotemporal control, yet its efficacy is hindered by heterogeneous distribution of PTT agents and limited synergy with other modalities. Here, we develop a dual-activation nanoplatform (IrO-P) that integrates exogenous photothermal stimulation with endogenous tumor microenvironment (TME)-responsive catalysis for synergistic chemodynamic therapy (CDT) and ferroptosis induction.

View Article and Find Full Text PDF