98%
921
2 minutes
20
Senescent chondrocytes, which are increased in osteoarthritic (OA) cartilage, promote cartilage defects and the senescent knee microenvironment by inducing senescence to surrounding normal chondrocytes by secreting senescence-associated secretory proteins. Many studies have used mesenchymal stem cells (MSCs) to treat OA, but MSC treatment remains challenging for clinical application owing to MSC quality control, engraftment, and fibrocartilage regeneration. Here, rather than relying on the direct regeneration of MSCs, we present a novel strategy to suppress OA by MSC-mediated senescent chondrocyte targeting via the paracrine activity of MSCs, thereby improving the knee microenvironment. First, to enable quality control of umbilical cord MSCs, priming MSCs by supplementing human platelet lysate (hPL) greatly enhanced MSC functions by increasing cellular glutathione levels throughout serial passaging. Intra-articular injection of primed MSCs successfully suppressed OA progression and senescent chondrocyte accumulation without direct regeneration. Indirect coculture with primed MSCs using transwell ameliorated the senescence phenotypes in OA chondrocytes, suggesting paracrine rejuvenation. Based on secretome analysis, we identified insulin-like growth factor 2 (IGF2) as a key component that induces paracrine rejuvenation by primed MSCs. The rejuvenation effects of IGF2 act through autophagy activation through the up-regulation of autophagy-related gene expression and autophagic flux. To cross-validate the effects of secreted IGF2 in vivo, knockdown of IGF2 in primed MSCs substantially abolished its therapeutic efficacy in a rabbit OA model. Collectively, these findings demonstrate that hPL supplementation enables MSC quality control by increasing MSC glutathione levels. The therapeutic mechanism of primed MSCs was secreted IGF2, which induces paracrine rejuvenation of senescent OA chondrocytes by activating autophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842674 | PMC |
http://dx.doi.org/10.34133/bmr.0152 | DOI Listing |
Regen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
Res Vet Sci
September 2025
Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS) - Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain; Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain. El
The allogeneic administration of equine mesenchymal stem/stromal cells (MSCs) has numerous advantages over autologous therapy, but their interactions with the patient's immune system need to be further elucidated. These interactions can be influenced by factors such as the compatibility between donor-receptor for the major histocompatibility complex (MHC) and by the MHC expression levels, which can change under different conditions like inflammatory exposure and chondrogeneic differentiation. In this study, we evaluated the local immune response induced by chondrogeneically differentiated (MSC-chondro), pro-inflammatory primed (MSC-primed) and basal (MSC-naïve) MSCs, and how this response changes the immunomodulatory and immunogenic profiles of MSCs in vivo.
View Article and Find Full Text PDFStem Cells Int
August 2025
Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council of Italy, Genoa, Italy.
Acute and chronic neurodegenerative conditions (NDs) are major causes of disability and mortality worldwide. Acute NDs encompass conditions such as stroke, traumatic brain injury (TBI), and spinal cord injury (SCI). On the other hand, chronic NDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFStem Cell Res Ther
August 2025
Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
Background: Acute lung injury (ALI) is characterized by excessive inflammation and alveolar damage, arising from pathogens or systemic insults such as sepsis, and can progress to severe acute respiratory distress syndrome (ARDS). Despite its severity, effective pharmacological treatments remain unavailable, and current clinical interventions are limited to supportive care such as mechanical ventilation. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as promising candidates for lung repair, but insufficient immunosuppressive capacity often limits their efficacy.
View Article and Find Full Text PDFInt J Nanomedicine
August 2025
Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China.
Introduction: Type 2 diabetes mellitus (T2DM) impairs wound healing due to hyperglycemia-induced immune dysfunction. Dendritic cells (DCs) in the skin are crucial for wound healing but are adversely affected by hyperglycemic microenvironment. Exosomes derived from mesenchymal stem cells (MSC-exos), especially adipose-derived MSCs (ADSCs) with higher accessibility, have shown potential for immune regulation.
View Article and Find Full Text PDF