Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Decentralized electrochemical reduction of nitrate into ammonium is explored as a viable approach to mitigate nitrate accumulation in groundwater. In this study, tubular porous electrodes made of titanium (termed hollow fiber electrodes or HFEs) were successfully modified with silver (Ag) nanoparticles through electrodeposition. Under galvanostatic control and in acidic electrolyte, Ag deposition on Ti HFE resulted in an increase in the Faradaic efficiency for ammonium formation from low concentrations of nitrate (50 mM), but only under reaction conditions of restricted mass transport. For conditions of favorable transport, facilitated by an inert gas flow (Ar) exiting the pores, a higher nitrate conversion but an increase in hydroxylamine selectivity at the expense of the ammonium selectivity are observed for Ti/Ag hollow fiber electrodes. For Ti/Ag electrodes, it is concluded that ammonium formation is prevented by effective removal of surface intermediates. Remarkably, for unmodified Ti hollow fiber electrodes, the Faradaic efficiency to ammonium is significantly improved when operated at high current densities and in conditions of high mass transport. The selectivity to liquid products even surpasses the selectivity of Ti/Ag electrodes. These findings indicate that nitrate reduction to ammonium at Ti and Ti/Ag hollow fiber electrodes can be achieved at comparable rates but under distinctly different process conditions. In fact, for Ti electrodes, operation at a lower applied potential compared to Ti/Ag electrodes is feasible, ultimately resulting in reduced energy consumption. This study thus highlights the importance of controlling the interfacial electrode environment, particularly when comparing and evaluating the effectiveness of electrode materials in electrochemical nitrate reduction. The study also reveals that transport phenomena affect electrode material-dependent activity-selectivity correlations and must be considered in ongoing material development efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843601PMC
http://dx.doi.org/10.1021/acsengineeringau.4c00035DOI Listing

Publication Analysis

Top Keywords

fiber electrodes
20
hollow fiber
16
nitrate reduction
12
ti/ag electrodes
12
electrodes
10
electrochemical nitrate
8
faradaic efficiency
8
efficiency ammonium
8
ammonium formation
8
mass transport
8

Similar Publications

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF

Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.

View Article and Find Full Text PDF

Achieving high capacitance while maintaining rapid charge transport and structural stability remains a major challenge in the design of battery-type supercapacitor electrodes. Herein, a molecularly engineered strategy is presented for constructing hierarchical hybrid electrodes by integrating petal-like NiCu-LDH nanosheets onto 3D HBC-x (x = H, F, OMe)-functionalized CNT paper via a one-step hydrothermal process. The incorporation of HBC effectively mitigates CNT agglomeration and constructs an interconnected conductive framework that enhances charge transport, shortens ion diffusion paths, and reduces internal resistance.

View Article and Find Full Text PDF

Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.

View Article and Find Full Text PDF

Fast Scan Cyclic Voltammetry (FSCV) is a widely used electrochemical technique to detect rapid extracellular dopamine transients . It employs carbon fiber microelectrodes (CFMEs), but conventional 7 µm diameter CFMEs often suffer from limited mechanical durability and reduced lifespan, hindering their use in chronic monitoring. To improve mechanical robustness and long-term functionality, we fabricated 30 µm diameter CFMEs and modified their geometry via electrochemical etching to form cone-shaped tips.

View Article and Find Full Text PDF