Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Conservation of marine biodiversity requires an understanding of the habitats needed to support and replenish species of interest. It also requires knowledge about the abundance and diversity of multispecies assemblages. Variation in the distribution and composition of kelp forests, one of the most productive marine coastal habitats globally, can have major influences on reef fishes-a group of ecologically and socioeconomically important species. In the face of widespread and escalating loss of kelp forests, quantification of these effects is urgently needed to assess and project cascading impacts on biodiversity. Here, we evaluate relationships between kelp forests and associated reef fish populations using a global meta-analysis of experimental kelp removals and comparative surveys of kelp and adjacent non-kelp habitats. These analyses show that kelp forests increase the abundance of reef fishes, though the significance of this effect varied depending on the structural complexity of kelp forests. In experimental studies, kelp forests have a significant positive effect on fish species richness, revealing that kelp act as true foundation species by supporting the diversity of associated multispecies assemblages. Importantly, regardless of kelp forest morphology and type of study (observational or experimental studies), kelp forests enhance the recruitment of early life history stages suggesting they are nursery habitats for many reef fish taxa. Lastly, kelp forests differentially affected species with different functional traits; small body size fishes from low trophic levels (e.g., herbivore and detritivores, micropredators, and mesopredators) and large body size fish from higher trophic level (e.g., piscivores, general carnivores) were both facilitated by kelp forests. Taken together, these results indicate that the loss of kelp forest, particularly those with more complex morphology, can reduce total abundance and diversity of fish, with possible cascading consequences for coastal ecosystem function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.70007DOI Listing

Publication Analysis

Top Keywords

kelp forests
40
kelp
15
forests
9
reef fishes
8
abundance diversity
8
multispecies assemblages
8
loss kelp
8
reef fish
8
experimental studies
8
studies kelp
8

Similar Publications

The sunflower star, Pycnopodia helianthoides, was a top benthic predator throughout its former range from Alaska to northern Mexico, until its populations were devastated starting in 2013 by a disease known as seastar wasting. The subsequent absence of sunflower stars from northern California waters was coincident with a dramatic ecological phase shift from healthy bull kelp forests (Nereocystis luetkeana) to barrens formed by purple sea urchins (Strongylocentrotus purpuratus), a prey of sunflower stars. Modeling suggests that restoration and resilience of kelp forests can be enhanced by the return of sunflower stars.

View Article and Find Full Text PDF

Potential blue carbon in the fringe of Southern European Kelp forests.

Sci Rep

August 2025

CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.

Blue Carbon encompasses the organic carbon sequestered and stored by coastal and marine ecosystems, including seaweed forests. This study aims to quantify the potential Blue Carbon storage and sequestration rates of subtidal kelp forests in Northern Portugal, focusing on the most dominant species Laminaria hyperborea and Saccorhiza polyschides. Through in-situ measurements of forest extension, biomass, growth, and carbon content, we determined that these kelp forests store approximately 16.

View Article and Find Full Text PDF

Kelp forests form some of the most productive areas on earth and are proposed to sequester carbon in the ocean, largely in the form of released dissolved organic carbon (DOC). Here we investigate the role of environmental, seasonal and age-related physiological gradients on the partitioning of net primary production (NPP) into DOC by the canopy forming giant kelp (Macrocystis pyrifera). Rates of DOC production were strongly influenced by an age-related decline in physiological condition (i.

View Article and Find Full Text PDF

Global warming is driving contraction of species' ranges through migration and mortality at their warm edge. However, for most species more subtle, sub-lethal changes in performance will be a more ubiquitous response to the Anthropocene. It has been suggested that reduction in body size will be a universal response to warming for cold-water species.

View Article and Find Full Text PDF

More than 10 years following the onset of the sea star wasting disease (SSWD) epidemic, affecting over 20 asteroid species from Mexico to Alaska, the causative agent has been elusive. SSWD killed billions of the most susceptible species, sunflower sea stars (Pycnopodia helianthoides), initiating a trophic cascade involving unchecked urchin population growth and the widespread loss of kelp forests. Identifying the causative agent underpins the development of recovery strategies.

View Article and Find Full Text PDF