Multi-scenario adaptive electronic nose for the detection of environmental odor pollutants.

J Hazard Mater

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Institute of Graphic Communication, Beijing 102600, China. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the rapid development of sensing technologies, electronic noses have become an important tool for real-time environmental monitoring, but ensuring their applicability and accuracy across various scenarios remains a key challenge. In this study, an electronic nose system with multi-scenario applicability and enhanced accuracy was developed to measure four common key pollutant concentrations in three typical pollution scenarios: landfills, wastewater treatment plants and livestock farms. A scenario-adaptive strategy was proposed to minimize the impact of interferences on the measurement accuracy by constructing a hierarchically structured qualitative-scenario-specific qualitative sub-network to process the sensor response data. Random Forest and Support Vector Machine algorithms were used and evaluated in scenario classification, with the Random Forest model performing best, achieving 100 % classification accuracy for 176 samples across all scenarios. Subsequently, scenario-specific qualitative models and unified model were developed with Random Forest Regression (RFR) and Artificial Neuron Networks (ANNs) after eliminating sensor features affected highly by interferences with feature importance analysis. The scenario-adaptive strategy achieved R² values exceeding 0.88 in target pollutant concentration prediction across all scenarios, with a mean absolute percentage error (MAPE) reduction of at least 15 % compared with the unified model for the test set. Furthermore, by flexibly integrating the most applicable algorithms, the scenario-adaptive strategy allows the benefits of different algorithms to be fully utilized in various scenarios. This study highlights the effectiveness of the adaptive strategy in improving electronic nose performance across various scenarios, laying a foundation for robust, adaptive electronic nose systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137660DOI Listing

Publication Analysis

Top Keywords

electronic nose
16
scenario-adaptive strategy
12
random forest
12
adaptive electronic
8
unified model
8
scenarios
6
electronic
5
multi-scenario adaptive
4
nose
4
nose detection
4

Similar Publications

Polystyrene particles induces asthma-like Th2-mediated lung injury through IL-33 secretion.

Environ Int

September 2025

Center for Respiratory Safety Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea. Electronic address:

Plastics, particularly polystyrene (PS), are extensively used worldwide, especially in disposable packaging, which contributes to environmental pollution by generating microplastic particles. Herein, we investigated the pulmonary toxic effects of PS microplastics, focusing on airway inflammation and immune response. PS microplastic (50 nm to 1 μm) exposure was more likely to cause a severe pulmonary inflammatory response, particularly with smaller particle sizes.

View Article and Find Full Text PDF

Fruit and fruit-based products are a valuable source of essential nutrients, critical for food security, and drive economic productivity with minimal inputs. The significant rise in global demand for high-quality imported fruit and fruit-based products reflects a shift in consumer awareness and interest in the products origin and potential health-promoting bioactive compounds. Analytical techniques such as liquid chromatography, gas chromatography, inductively coupled plasma techniques, isotope-ratio mass spectrometry (IRMS), near infrared (NIR) spectroscopy, visible near infrared (VIS-NIR) spectroscopy, hyperspectral imaging (HSI), mid-infrared (MIR) spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, terahertz spectroscopy, dielectric spectroscopy, electronic nose (e-nose), and electronic tongue (e-tongue) coupled with supervised and unsupervised chemometrics can be employed for traceability, authentication, and bioactive profiling of fruit and fruit-based products.

View Article and Find Full Text PDF

Analysis of flavor formation and metabolite changes during production of Double-Layer Steamed Milk Custard made from buffalo milk.

PLoS One

September 2025

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, China.

Double-Layer Steamed Milk Custard (DLSMC) is a famous traditional Chinese dessert. This study aimed to analyze the flavor and the changes in metabolites during different stages of DLSMC preparation, including raw buffalo milk, thermo-processing, first and second-layer milk skin formation. Electronic nose and electronic tongue were employed to preliminarily assess the overall flavor characteristics between these stages.

View Article and Find Full Text PDF

Effects of fermentation with different lactic acid bacteria on the physicochemical, electronic sensory, and aroma profiles of heat-sterilized tomato juice.

Food Sci Biotechnol

October 2025

Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China.

The current work aimed to investigate the effects of fermentation of , , and on the physicochemical, electronic sensory evaluation, and flavour characteristics of heat-sterilized tomato juice (HTJ). The results indicated that LAB fermentation significantly decreased the pH, sucrose, and glucose, and lactic acid was increased. E-nose and tongue analyses revealed that the response to organic sulfides, terpenoids, and sourness increased after LAB fermentation HS-SPME-GC-MS and OAV revealed that heat-sterilization resulted a significant loss of aroma compounds (38.

View Article and Find Full Text PDF