Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The newly proposed classification of cardiomyopathies, referred to as 'the Padua Classification', is based on both pathobiological basis (genetics, molecular biology, and pathology) and clinical features (morpho-functional and structural ventricular remodelling as evidenced by cardiac magnetic resonance). Cardiomyopathies are grouped into tree main categories and characterized by a designation combining both 'anatomical' and 'functional' features: hypertrophic/restrictive, dilated/hypokinetic, and scarring/arrhythmogenic; each cardiomyopathy group includes either genetic or non-genetic aetiologic variants. This novel approach aims to enhance the diagnostic accuracy and to support 'disease-specific' therapeutic strategies, with the objective to improve patient management and outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836707PMC
http://dx.doi.org/10.1093/eurheartjsupp/suae108DOI Listing

Publication Analysis

Top Keywords

hypertrophic/restrictive dilated/hypokinetic
8
dilated/hypokinetic scarring/arrhythmogenic
8
'padua classification'
4
classification' cardiomyopathies
4
cardiomyopathies three
4
three groups
4
groups hypertrophic/restrictive
4
scarring/arrhythmogenic newly
4
newly proposed
4
proposed classification
4

Similar Publications

The newly proposed classification of cardiomyopathies, referred to as 'the Padua Classification', is based on both pathobiological basis (genetics, molecular biology, and pathology) and clinical features (morpho-functional and structural ventricular remodelling as evidenced by cardiac magnetic resonance). Cardiomyopathies are grouped into tree main categories and characterized by a designation combining both 'anatomical' and 'functional' features: hypertrophic/restrictive, dilated/hypokinetic, and scarring/arrhythmogenic; each cardiomyopathy group includes either genetic or non-genetic aetiologic variants. This novel approach aims to enhance the diagnostic accuracy and to support 'disease-specific' therapeutic strategies, with the objective to improve patient management and outcome.

View Article and Find Full Text PDF

Over the last 20 years, the scientific progresses in molecular biology and genetics in combination with the increasing use in the clinical setting of contrast-enhanced cardiac magnetic resonance (CMR) for morpho-functional imaging and structural myocardial tissue characterization have provided important new insights into our understanding of the distinctive aspects of cardiomyopathy, regarding both the genetic and biologic background and the clinical phenotypic features. This has led to the need of an appropriate revision and upgrading of current nosographic framework and pathobiological categorization of heart muscle disorders. This article proposes a new definition and classification of cardiomyopathies that rely on the combination of the distinctive pathobiological basis (genetics, molecular biology and pathology) and the clinical phenotypic pattern (morpho-functional and structural features), leading to the proposal of three different disease categories, each of either genetic or non-genetic etiology and characterized by a combined designation based on both "anatomic" and "functional" features, i.

View Article and Find Full Text PDF