98%
921
2 minutes
20
The newly proposed classification of cardiomyopathies, referred to as 'the Padua Classification', is based on both pathobiological basis (genetics, molecular biology, and pathology) and clinical features (morpho-functional and structural ventricular remodelling as evidenced by cardiac magnetic resonance). Cardiomyopathies are grouped into tree main categories and characterized by a designation combining both 'anatomical' and 'functional' features: hypertrophic/restrictive, dilated/hypokinetic, and scarring/arrhythmogenic; each cardiomyopathy group includes either genetic or non-genetic aetiologic variants. This novel approach aims to enhance the diagnostic accuracy and to support 'disease-specific' therapeutic strategies, with the objective to improve patient management and outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836707 | PMC |
http://dx.doi.org/10.1093/eurheartjsupp/suae108 | DOI Listing |
Eur Heart J Suppl
February 2025
Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy.
The newly proposed classification of cardiomyopathies, referred to as 'the Padua Classification', is based on both pathobiological basis (genetics, molecular biology, and pathology) and clinical features (morpho-functional and structural ventricular remodelling as evidenced by cardiac magnetic resonance). Cardiomyopathies are grouped into tree main categories and characterized by a designation combining both 'anatomical' and 'functional' features: hypertrophic/restrictive, dilated/hypokinetic, and scarring/arrhythmogenic; each cardiomyopathy group includes either genetic or non-genetic aetiologic variants. This novel approach aims to enhance the diagnostic accuracy and to support 'disease-specific' therapeutic strategies, with the objective to improve patient management and outcome.
View Article and Find Full Text PDFInt J Cardiol
January 2025
Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy.
Over the last 20 years, the scientific progresses in molecular biology and genetics in combination with the increasing use in the clinical setting of contrast-enhanced cardiac magnetic resonance (CMR) for morpho-functional imaging and structural myocardial tissue characterization have provided important new insights into our understanding of the distinctive aspects of cardiomyopathy, regarding both the genetic and biologic background and the clinical phenotypic features. This has led to the need of an appropriate revision and upgrading of current nosographic framework and pathobiological categorization of heart muscle disorders. This article proposes a new definition and classification of cardiomyopathies that rely on the combination of the distinctive pathobiological basis (genetics, molecular biology and pathology) and the clinical phenotypic pattern (morpho-functional and structural features), leading to the proposal of three different disease categories, each of either genetic or non-genetic etiology and characterized by a combined designation based on both "anatomic" and "functional" features, i.
View Article and Find Full Text PDF