98%
921
2 minutes
20
Background: Plasma p-tau181 is a promising diagnostic marker of Alzheimer's disease (AD) pathology, reflecting amyloid accumulation, tau deposition, and downstream neurodegeneration that leads to cognitive impairment. However, the specificity of plasma p-tau181 to AD-related tau pathology remains unclear.
Objective: To assess whether plasma p-tau181 is differentially associated with volumetric changes in distinct hippocampal subfields and whether they mediate the relationship between plasma p-tau181 and cognition across the AD continuum.
Methods: 213 participants with normal cognition (N=57), mild cognitive impairment (N=109), and AD (N=47) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were included for cross-sectional analyses of hippocampal subfield volume that was quantified using the Automatic Segmentation of Hippocampal Subfields (ASHS) software. A subset (n=89) was evaluated for one-year longitudinal changes in hippocampal subfield volume.
Results: Higher plasma p-tau181 levels (pg/mL) were associated with decreased volumes in the CA1 and dentate gyrus, bilaterally, and right entorhinal cortex ( < 0.05). Additionally, volumes of these subfields partially mediated the relationship between plasma p-tau181 and ADNI memory and executive function composite scores. Baseline plasma p-tau181, however, did not predict longitudinal atrophy of hippocampal subfields across diagnostic groups.
Conclusions: Plasma p-tau181 is differentially associated with hippocampal subfields that are closely related to both age- and AD-related neurodegeneration. Elevated plasma p-tau181 levels may reflect tau accumulation, and volumetric changes in CA1 and DG may mediate the detrimental effect of tau pathology on cognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838288 | PMC |
http://dx.doi.org/10.1101/2025.01.27.635113 | DOI Listing |
J Prev Alzheimers Dis
September 2025
Stanford Neuroscience Health Center, Stanford University, Palo Alto CA USA.
Background: AR1001 is a phosphodiesterase-5 inhibitor that produces improved cognitive performance and reduces amyloid-β and phosphorylated tau burdens in preclinical models of Alzheimer's disease (AD).
Objectives: To evaluate the safety and efficacy of AR1001 in participants with mild-to-moderate Alzheimer's disease (AD).
Design: Randomized, double-blind, placebo-controlled phase 2 trial conducted at 21 sites in the United States.
Alzheimers Dement
September 2025
Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA.
Introduction: Glial fibrillary acidic protein (GFAP) may contribute to Alzheimer's pathology at early disease stages. GFAP moderation of Alzheimer's disease (AD)-related neurodegeneration and cognition is unclear.
Methods: We examined plasma GFAP moderation of AD biomarkers (amyloid beta [Aβ]-positron emission tomography [PET][A]; plasma phosphorylated tau-181 [p-tau181][T]), neurodegeneration (plasma NfL[N]; structural magnetic resonance imaging [MRI][N]), and cognition (Cog; Cog) in two cohorts: University of California San Francisco (UCSF) (N = 212, 91.
JAMA Netw Open
September 2025
Department of Neurosciences, University of California, San Diego, La Jolla.
Importance: Subjective cognitive decline (SCD) may be an early indicator of Alzheimer disease and related dementias (ADRD), yet its association with plasma biomarkers remains unclear among middle-aged and older adults (aged 50-86 years).
Objective: To examine associations between plasma biomarkers of amyloid, tau, neuroaxonal damage, and glial activation with SCD in a heterogeneous cohort of Hispanic and/or Latino adults.
Design, Setting, And Participants: This cross-sectional study used survey-weighted data from the Study of Latinos-Investigation of Neurocognitive Aging, an ancillary study of the Hispanic Community Health Study/Study of Latinos.
Clin Nucl Med
September 2025
Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea.
Background: Alzheimer disease (AD) is characterized by amyloid-β plaques (A), tau tangles (T), and neurodegeneration (N), collectively defining the ATN framework. While imaging biomarkers are well-established, the prognostic value of plasma biomarkers in predicting cognitive decline remains underexplored. This study compares plasma and imaging A/T/N biomarkers in predicting cognitive decline and evaluate the impact of combining biomarkers across modalities.
View Article and Find Full Text PDFFront Aging Neurosci
August 2025
Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
Objective: The development of non-invasive clinical diagnostics is paramount for the early detection of Alzheimer's disease (AD). Neurofibrillary tangles in AD originate from the entorhinal cortex, a cortical memory area that mediates navigation via path integration (PI). Here, we studied correlations between PI errors and levels of a range of AD biomarkers using a 3D virtual reality navigation system to explore PI as a non-invasive surrogate marker for early detection.
View Article and Find Full Text PDF