98%
921
2 minutes
20
Cytoplasmic accumulation of TDP-43 is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. While current studies have primarily focused on gene regulation mediated by full-length nuclear TDP-43, the potential effects of cytoplasmic TDP-43 fragments remain less explored. Our previous findings demonstrated that primate-specific cleavage of TDP-43 contributes to its cytoplasmic localization, prompting further investigation into its pathological effects. In the cynomolgus monkey brain, we observed that mutant or truncated TDP-43 was transported onto the ribosome organelle. Ribosome-associated transcriptomic analysis revealed dysregulation of apoptosis- and lysosome-related genes, indicating that cytoplasmic TDP-43 induces neurotoxicity by binding to ribosomes and disrupting mRNA expression. These findings provide mechanistic insights into the gain-of-function effects of pathological TDP-43.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000131 | PMC |
http://dx.doi.org/10.24272/j.issn.2095-8137.2024.286 | DOI Listing |
Biophys Chem
September 2025
Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
A comprehensive understanding of the molecular mechanism underlying the Liquid-Liquid Phase Separation (LLPS) pathway of LCD-TDP43 remains a challenge in the context of its neuropathogenesis. The primary driving force behind the TDP-43 LLPS is the interplay of hydrophobic interactions reinforced by aromatic residues. This study presents a novel, convenient, sensitive, and probe-free approach using excitation-emission matrix (EEM) fluorescence to monitor the microenvironment of aromatic residues and π-π stacking interactions during different stages of the LLPS pathway.
View Article and Find Full Text PDFCell Rep
September 2025
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA. Electronic address:
Progranulin-deficient frontotemporal dementia (GRN-FTD) is a major cause of familial FTD with TAR DNA-binding protein 43 (TDP-43) pathology, which is linked to exon dysregulation. However, little is known about this dysregulation in glial and neuronal cells. Here, using splice-junction-covering enrichment probes, we introduce single-nuclei long-read RNA sequencing 2 (SnISOr-Seq2), targeting 3,630 high-interest genes without loss of precision, and complete the first single-cell, long-read-resolved case-control study for neurodegeneration.
View Article and Find Full Text PDFNeurobiol Dis
September 2025
Cellular Models and Neuroepigenetics Section, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy.
TDP-43 is known to bind the mRNA of histone deacetylase 6 (HDAC6), influencing its RNA translation. Many studies suggest that HDAC6 participates in the regulation of autophagy, which we found impaired in sporadic ALS (sALS) patients. Aim of this work is to evaluate the interaction between TDP-43 and HDAC6 mRNA and to evaluate the effect of the up- and down-regulation of HDAC6 on autophagy in SH-SY5Y cells.
View Article and Find Full Text PDFBrain
September 2025
IRCSS Fondazione Santa Lucia, European Center for Brain Research (CERC), Rome 00143, Italy.
Innate immune signaling pathways are hyperactivated in the central nervous system (CNS) of patients with Amyotrophic Lateral Sclerosis (ALS), as well as in preclinical models with diverse causative backgrounds including TDP-43, SOD1, and C9orf72 mutations. This raises an important question of whether these pathways are key pathogenic features of the disease, and whether therapeutic amelioration could be beneficial. Here, we systematically profile Type-I interferon (IFN)-stimulated gene (ISG) expression signatures using a non-biased approach in CNS tissue from a cohort of 36 individuals with ALS, including sporadic ALS (sALS; n=18), genetic ALS caused by (i) a C9orf72 hexanucleotide repeat expansion (C9-ALS; n=11), and (ii) a SOD1 mutation (SOD1-ALS; n=5), alongside age- and sex-matched individuals who died of a non-neurological cause (n=12).
View Article and Find Full Text PDFJ Neurosci
September 2025
Center for Neurodegenerative Disease Research, Dept. Pathology, Perelman School of Medicine at the University of Pennsylvania, 3 Maloney Bldg, 3600 Spruce St, Philadelphia, PA 19140, USA.
Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence indicates that TDP-43 pathology induces neuronal hyperexcitability, which may contribute to excitotoxic neuronal death. To characterize TDP-43 mediated network excitability changes in a disease-relevant model, we performed in vivo continuous electroencephalography monitoring and ex vivo acute hippocampal slice electrophysiology in rNLS8 mice (males and females), which express human TDP-43 with a defective nuclear localization signal (hTDP-43ΔNLS).
View Article and Find Full Text PDF