A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Universal Strategy to Mitigate Microphase Separation via Cellulose Nanocrystal Hydration in Fabricating Strong, Tough, and Fatigue-Resistant Hydrogels. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a common natural phenomenon, phase separation is exploited for the development of high-performance hydrogels. Using supersaturated salt to create microphase-separated hydrogels with strengthened mechanical properties has gained widespread attention. However, such strengthened hydrogel loses its intrinsic flexibility, making the phase separation strategy unsuitable for the fabrication of stretchable and tough hydrogels. Here, a phase-engineering design strategy is introduced to produce stretchable yet tough hydrogels using supersaturated NaAc salt, by leveraging the hydration effect of cellulose nanocrystal (CNC) to mitigate microphase separation. The CNC-mitigated microphase-separated hydrogel presents unprecedented mechanical properties, for example, tensile strength of 1.8 MPa with a fracture strain of 4730%, toughness of 43.1 MJ m, fracture energy of 75.4 kJ m, and fatigue threshold up to 3884.7 J m. Furthermore, this approach is universal in synthesizing various microphase separation-enhanced polymer gels, including polyacrylic acid, poly(acrylic acid-co-acrylamide), gelatin, and alginate. These advancements provide insights into the incorporation of CNC-mediated microphase separation structures in hydrogels, which will foster the future development of high-performance soft materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837898PMC
http://dx.doi.org/10.1002/adma.202416916DOI Listing

Publication Analysis

Top Keywords

microphase separation
12
mitigate microphase
8
cellulose nanocrystal
8
phase separation
8
development high-performance
8
hydrogels supersaturated
8
mechanical properties
8
stretchable tough
8
tough hydrogels
8
hydrogels
6

Similar Publications