A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Constructing an origin discrimination model of japonica rice in Heilongjiang Province based on confocal microscopy Raman spectroscopy technology. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An origin discrimination model for rice from five production regions in Heilongjiang Province was constructed based on the combination of confocal microscopy Raman spectroscopy and chemometrics. A total of 150 field rice samples were collected from the Fangzheng, Chahayang, Jiansanjiang, Xiangshui, and Wuchang production areas. The optimal sample processing conditions, instrument parameter settings, and spectrum acquisition techniques were identified by investigating the influencing factor. The Raman spectra of milled rice within the range of 100-3200 cm were selected as the raw data, and the optimal preprocessing method combination consisting of normalization, Savitzky-Golay smoothing, and multivariate scatter correction was identified. Subsequently, the competitive adaptive reweighted sampling and discrete binary particle swarm optimization algorithms were employed to optimize the feature wavelength selection, resulting in the screening of 226 and 1899 feature wavelength variables, respectively. Using the full Raman spectrum data and feature wavelength data as inputs, partial least squares discriminant analysis, support vector machine and extreme learning machine origin discrimination models were constructed. The results indicated that the BPSO-GA-SVM model exhibited the best predictive ability, achieving a testing set accuracy of 86.67%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836377PMC
http://dx.doi.org/10.1038/s41598-024-83894-3DOI Listing

Publication Analysis

Top Keywords

origin discrimination
12
feature wavelength
12
discrimination model
8
heilongjiang province
8
confocal microscopy
8
microscopy raman
8
raman spectroscopy
8
constructing origin
4
model japonica
4
rice
4

Similar Publications