A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Toward Low Energetic Disorder in Organic Solar Cells: The Critical Role of Polymer Donors. | LitMetric

Toward Low Energetic Disorder in Organic Solar Cells: The Critical Role of Polymer Donors.

J Phys Chem Lett

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Compared with those of inorganic and perovskite solar cells, the power conversion efficiencies of organic solar cells (OSCs) are severely limited by a large energetic disorder. However, the origin of energetic disorder for OSCs remains poorly understood. Herein, we systematically investigate the energetic disorder in representative OSCs and the effect of both the acceptors and polymer donors by combining atomistic molecular dynamics simulations with density functional theory calculations. The results indicate that regardless of whether the OSCs are based on fullerene or acceptor-donor-acceptor (A-D-A) acceptors, the energetic disorder in the ionization potentials of the polymer donors is significantly larger than that in the electron affinities of the acceptors. Moreover, the energetic disorder of the donors matched with the fullerene acceptors is noticeably greater than that of the donors matched with the A-D-A acceptors. This implies that, different from our intuition, the reduction in the energetic disorder from the fullerene-based to A-D-A acceptor-based OSCs is primarily attributed to the change in the polymer donors rather than the acceptors. This work underscores the vital importance of optimizing polymer donors toward low energetic disorder for high-efficiency OSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5c00132DOI Listing

Publication Analysis

Top Keywords

energetic disorder
32
polymer donors
20
solar cells
12
low energetic
8
disorder
8
organic solar
8
a-d-a acceptors
8
acceptors energetic
8
donors matched
8
donors
7

Similar Publications