98%
921
2 minutes
20
Introduction: Stability of catheter-tissue contact in the robotic magnetic navigation (RMN) system is one of the key features that distinguishes this system from manually guided catheters. Numerous studies have shown that contact force (CF) in manually controlled catheters is as crucial for forming an optimal lesion as the duration of application or power. Catheters used in the RMN system lack a quantitative method for intraoperative monitoring of this parameter. Our study aims to partially address this gap in scientific knowledge.
Methods: We conducted a total of 1200 CF measurements using the RMN system (Stereotaxis, St. Louis, MO, USA), a magnetic-guided 8 Fr RF ablation catheter (THERMOCOOL RMT Catheter, Biosense Webster, Irvine, CA, USA) inserted through a long sheath (SR0, Abbott Cardiovascular, Nathan Lane North, Plymouth, MN, USA), and a precision jewelry scale (IKEME, Guangdong, CN). We analyzed the impact on the obtained CF values of four different magnetic field vectors (transverse, sagittal, caudal, and cranial), two field strengths (0.1T and 0.08T), and three catheter extension configurations from the long sheath (with Position 1 being the least extended and Position 3 the most extended).
Results: The contact force values varied significantly across the different magnetic field vectors, field strengths, and catheter extensions from the vascular sheath. The greatest differences in achieved values were observed across the different magnetic field vectors in the Position 1, ranging from 3.52 ± 0.1 g (caudal plane) to 15.15 ± 0.05 g (cranial plane) at 0.08 Tesla (T) field strength (p < 0.001), and from 4.10 ± 0.06 g (caudal) to 15.01 ± 0.07 g (cranial) at 0.1 T, p < 0.001. Differences in other vectors reached approximately 20%. The highest CF values were obtained in Position 1, intermediate values in Position 2, and the lowest in Position 3. An exception was the transverse vector, where, particularly with a magnetic field of 0.1 T, more similar values were observed across Positions 1-3, with respective values of 8.61 ± 0.14 g, 9.36 ± 0.06 g, and 8.31 ± 0.05 g. A stronger magnetic field (0.1 T compared to 0.08 T) resulted in higher CF values, especially during measurements in the transverse vector. This effect was most pronounced in the most extended catheter from the sheath - Position 3 (with respective values of 4.54 ± 0.09 g vs. 8.31 ± 0.05 g, p < 0.001). In the sagittal, cranial, and caudal vectors, the differences were less noticeable.
Conclusion: Different magnetic field vectors, catheter extensions from the sheath, and magnetic field strengths result in varying contact force values. For effective radiofrequency ablation lesions, these factors should be considered alongside power, duration, and other established parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jce.16597 | DOI Listing |
J Oral Rehabil
September 2025
Department of Prosthodontics, Dental School, National and Kapodistrian University of Athens, Athens, Greece.
Background: Although oral diseases and frailty can be met earlier in life, there is limited information on their association across the lifespan.
Objectives: To scope for the association of oral factors with physical frailty in Greek community-dwelling adults.
Methods: Participants were over 18 years of age with ≥ 20 natural teeth, ≥ 10 occlusal contacts, and no removable dentures.
Anat Rec (Hoboken)
September 2025
Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel.
Rodents' ability to encode the whisking phase has been extensively documented through neuronal recordings from ascending sensory pathways. Yet, while indicating that reafference originates from the mechanoreceptors, the mechanistic underpinnings of the whisking phase encoding within the follicle remain unclear. Here we present anatomical, histological, and biomechanical evidence for the presence of a distinctive elastic segment (ES) within the basal part of the whisker shaft inside the follicle.
View Article and Find Full Text PDFMed Sci Sports Exerc
September 2025
Department of Engineering Mechanics, Tsinghua University, Beijing, CHINA.
Purpose: Develop a musculoskeletal-environment interaction model to reconstruct the dynamic-interaction process in skiing.
Methods: This study established a skier-ski-snow interaction (SSSI) model that integrated a 3D full-body musculoskeletal model, a flexible ski model, a ski boot model, a ski-snow contact model, and an air resistance model. An experimental method was developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which were cost-effective and capable of capturing motion in large-scale field conditions.
Acta Crystallogr E Crystallogr Commun
September 2025
Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M., Ulugbek Str 83, Tashkent, Uzbekistan.
The title complex, [Ca(NO)(CHNO)(HO)], crystallizes with an eight-coordinate Ca ion in a distorted trigonal-dodeca-hedral coordination environment. The metal ion is coordinated to two nicotinamide ligands their carbonyl O atoms, two bidentate nitrate anions and two water mol-ecules. The nicotinamide ligands adopt a nearly geometry, while the nitrate anions and aqua ligands are arranged in a pseudo- fashion.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou City, Fujian, China.
Objective: This study investigates the biomechanical effects of long-term Tai Chi practice on the knee meniscus through biomechanical experimentation and finite element simulation, focusing on practitioners performing Knee Brushing and Twisting Step. The findings aim to establish scientific guidelines for optimizing exercise protocols in middle-aged and elderly populations.
Methods: Twenty male middle-aged and elderly practitioners were recruited, divided into a Beginner Group (BG: n = 10), and an Experienced Group (EG: n = 10).