98%
921
2 minutes
20
Background: The increased myocardial vulnerability that occurs in diabetic patients following an ischemia-reperfusion injury (I/RI) represents a significant perioperative safety risk. A comprehensive understanding of the intrinsic mechanisms underlying this phenomenon is therefore of paramount importance.
Purposes: The objective of this study is to investigate the potential mechanism of action between impaired autophagic flux and increased vulnerability in diabetic myocardium. This will provide a foundation for the clinical search for effective preventive and curative measures.
Methods: The transcriptomic alterations in autophagy-related genes following myocardial exposure to I/RI were analyzed by single-cell sequencing. This was followed by the validation of potential mechanisms of action between impaired autophagic flux and increased susceptibility at the cellular and animal levels, respectively.
Results: After I/RI in diabetic myocardium, there was a significant increase in the number of CM1 subgroups and a specific downregulation of 239 autophagy-related genes led by RILP. HE staining revealed that myocardial injury was exacerbated in diabetic mice subjected to I/RI. Transmission electron microscopy revealed that the accumulation of autophagic vesicles in cardiomyocytes of diabetic mice resulted in impaired autophagic flux. qRT-PCR revealed that the expression of RILP was significantly reduced in diabetic mice subjected to I/RI. WB showed that P62 was significantly increased and RILP was significantly decreased in diabetic mice subjected to I/RI compared to healthy mice. Inhibition of mTOR during hypoxia/reoxygenation (H/R) injury restored RILP expression and attenuated cellular injury in cardiomyocytes cultured with high glucose.
Conclusion: Following I/RI in diabetic myocardium, an increase in the CM1 subpopulation and a reduction in RILP expression result in impaired autophagic flux. Regulation of the mTOR/RILP pathway can restore impaired autophagic flux and improve myocardial vulnerability, thereby exerting cardioprotective effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825452 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1506401 | DOI Listing |
Vet Microbiol
September 2025
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou Unive
Bovine coronavirus (BCoV), a member of the Betacoronavirus genus, causes severe calf gastroenteritis and respiratory disease, resulting in a significant loss of livestock. Coronavirus non-structural protein 14 (nsp14) is involved in viral RNA replication and modification and subverts host immune regulatory pathways to facilitate immune evasion. In this study, we demonstrated that BCoV nsp14 mediates TNF receptor-associated factor 3 (TRAF3) degradation through the coordinated targeting of the ubiquitin-proteasome and autophagy-lysosomal pathways, thereby potentiating viral replication.
View Article and Find Full Text PDFArch Pharm Res
September 2025
Department of Biosciences, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, 700109, India.
Bacoside A (BCA), a triterpenoid saponin isolated from Bacopa monnieri, exhibits diverse pharmacological properties, including neuroprotective, hepatoprotective, anti-stress, anti-inflammatory, and anti-ulcer effects. In the present study, BCA demonstrates pronounced anticancer activity against K562 chronic myelogenous leukemia (CML) cells by modulating autophagy-apoptosis dynamics. BCA induces dose- and time-dependent cytotoxicity in K562 cells while sparing normal human peripheral blood mononuclear cells (hPBMCs) and Vero cells, indicating therapeutic selectivity.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA.
Unlabelled: Zika virus (ZIKV) is the lone member of Flavivirus family known to cause congenital glaucoma following exposure. The molecular mechanisms of ZIKV-induced glaucoma remain elusive, with no known therapeutic modalities. Autophagy plays a dual role in viral infections and glaucoma pathogenesis.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, 400038, China.
Cadmium (Cd) is a heavy metal that exhibits strong carcinogenic properties and promotes breast cancer (BC) progression. Autophagic flux dysfunction is involved in Cd-induced BC progression, but the underlying molecular mechanisms remain unclear. Here, it is observed that impaired autophagic flux and metabolic reprogramming are notable features related to Cd-induced proliferation, migration, and invasion in BC cell lines, including T-47D and MCF-7 cells.
View Article and Find Full Text PDFCancer cachexia is a highly debilitating clinical syndrome of involuntary body mass loss featuring profound muscle wasting leading to high mortality. Notably, cardiac wasting is prominent in cancer patients and cancer survivors. Cachexia studies present significant challenges due to the absence of human models and mainly short-term animal studies.
View Article and Find Full Text PDF