98%
921
2 minutes
20
Osteosarcoma is a common bone tumor in adolescents, which is characterized by lipid metabolism disorders and plays a key role in tumorigenesis and disease progression. Ferroptosis is an iron-dependent form of programmed cell death associated with lipid peroxidation. This review provides an in-depth analysis of the complex relationship between lipid metabolic reprogramming and associated ferroptosis in OS from the perspective of metabolic enzymes and metabolites. We discussed the molecular basis of lipid uptake, synthesis, storage, lipolysis, and the tumor microenvironment, as well as their significance in OS development. Key enzymes such as adenosine triphosphate-citrate lyase (ACLY), acetyl-CoA synthetase 2 (ACSS2), fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1) are overexpressed in OS and associated with poor prognosis. Based on specific changes in metabolic processes, this review highlights potential therapeutic targets in the lipid metabolism and ferroptosis pathways, and in particular the HMG-CoA reductase inhibitor simvastatin has shown potential in inducing apoptosis and inhibiting OS metastasis. Targeting these pathways provides new strategies for the treatment of OS. However, challenges such as the complexity of drug development and metabolic interactions must be overcome. A comprehensive understanding of the interplay between dysregulation of lipid metabolism and ferroptosis is essential for the development of innovative and effective therapies for OS, with the ultimate goal of improving patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830322 | PMC |
http://dx.doi.org/10.1016/j.jbo.2025.100660 | DOI Listing |
Int J Gen Med
September 2025
Department of Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200035, People's Republic of China.
Objective: This study aims to investigate the association between the dynamics of routine metabolic markers and endometriosis severity.
Methods: A retrospective analysis was conducted on patients diagnosed with endometriosis at Zhongshan Hospital, Xiamen, affiliated with Fudan University. The collected data encompassed demographic details and biochemical indicators related to lipid, hepatobiliary, renal metabolism, and electrolyte balance.
Mol Ther Methods Clin Dev
June 2025
Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, Hunan 410060, P.R. China.
S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.
View Article and Find Full Text PDFFront Nutr
August 2025
Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, China.
Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, with abdominal fat, particularly visceral fat, closely associated with its onset and progression. While the lipid accumulation product (LAP) has been linked to COPD risk, it is not sufficient to fully reflect the level of visceral fat. In contrast, the body roundness index (BRI), a more accurate measure of abdominal fat distribution, has not been fully explored in relation to COPD.
View Article and Find Full Text PDF