98%
921
2 minutes
20
Splenectomy or congenital asplenia is associated with severe reduction of memory B cells and increased risk of fulminant sepsis by encapsulated bacteria. Current guidelines recommend vaccinations against these pathogens before or after splenectomy, but the longevity of immunity acquired after splenectomy has not been determined. The impact of splenectomy on innate immune cells is unknown. We analyzed frequency, differentiation stage, and function of innate and adaptive immunity in the peripheral blood of adult (n = 41) and pediatric (n = 14) patients splenectomized or born asplenic and in spleens of solid organ donors. The absence of the spleen impacts the B-cell compartment, causing a significant increase of circulating immature transitional and depletion of memory B cells. Using SARS-CoV-2 vaccination as a model, we show that 1 year after the last immunization, despite normal levels of neutralizing antibodies, memory B and T cells were significantly reduced. Analysis of post-pandemic spleens shows that spike-specific memory B and T cells homed to the spleen. We also show a previously unrecognized role of the spleen in the homeostasis of innate NK and Vδ2 T cells. These populations showed altered phenotype and impaired function in the adults, but not in children, suggesting that other tissues may support innate cell development during early life. The reduced function of innate lymphocytes must be considered as an additional immune impairment and risk factor. These findings emphasize the spleen's irreplaceable role in maintaining immune memory across all ages and suggest that its absence contributes to dysfunctions of innate and adaptive immunity in adults.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966361 | PMC |
http://dx.doi.org/10.1002/ajh.27634 | DOI Listing |
Front Immunol
September 2025
Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
NSG-SGM3 humanized mouse models are well-suited for studying human immune physiology but are technically challenging and expensive. We previously characterized a simplified NSG-SGM3 mouse, engrafted with human donor CD34 hematopoietic stem cells without receiving prior bone marrow ablation or human secondary lymphoid tissue implantation, that still retains human mast cell- and basophil-dependent passive anaphylaxis responses. Its capacities for human antibody production and human B cell maturation, however, remain unknown.
View Article and Find Full Text PDFBiochem Biophys Rep
June 2025
Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Background: Synaptic dysfunction and synapse loss occur in Alzheimer's disease (AD). The current study aimed to identify synaptic-related genes with diagnostic potential for AD.
Methods: Differentially expressed genes (DEGs) were overlapped with phenotype-associated module selected through weighted gene co-expression network analysis (WGCNA), and synaptic-related genes.
Immunooncol Technol
September 2025
Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
Background: Breast cancer is a systemic disease, yet the impact of tumor molecular subtype and disease stage on the systemic immune landscape remains poorly understood. In this study, we comprehensively analyzed the systemic immune landscape in a large cohort of breast cancer patients, encompassing all molecular subtypes and disease stages, alongside a control group of healthy donors.
Materials And Methods: Using multi-parameter flow cytometry, we assessed the abundance, phenotype, and activation status of diverse innate and adaptive immune cell populations across peripheral blood samples from 355 breast cancer patients and 65 healthy donors.
J Affect Disord
September 2025
Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, PR China. Electronic address:
Objective: Major depressive disorder (MDD) is among the most prevalent and debilitating mental health conditions worldwide. This study aims to investigate the bidirectional causal relationship between immune cells and MDD using Mendelian randomization (MR) analysis and determine whether metabolites mediate this relationship.
Methods: We compiled and analyzed whole-genome data for 731 immune cell traits, 1091 blood metabolites, 309 metabolic ratios, and disease data from 170,756 individuals with MDD and 329,443 controls.
Cell Genom
September 2025
Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. Electronic address:
Inherited genetic variants contribute to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC), but it is unknown which cell types are involved in this process. We performed single-cell RNA sequencing of BE, EAC, and paired normal tissues and integrated genome-wide association data to determine cell-type-specific genetic risk and cellular processes that contribute to BE and EAC. The analysis reveals that EAC development is driven to a greater extent by local cellular processes than BE development and suggests that one cell type of BE origin (intestinal metaplasia cells) and cellular processes that control the differentiation of columnar cells are of particular relevance for EAC development.
View Article and Find Full Text PDF