Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents the fabrication of highly photosensitive undoped zinc oxide (ZnO) thin films for vacuum ultraviolet (VUV) radiation detection, covering the wavelength range of 100-200 nm. ZnO films were deposited using hybrid pulsed reactive magnetron sputtering, assisted by ECWR (electron cyclotron wave resonance) plasma. Control of the ECWR power (P), ranging from 0 to 380 W, played a crucial role in enhancing the films' photoconductive properties. At P = 200 W, the photosensitivity increased by 8 orders of magnitude compared to films deposited without ECWR assistance. This improvement was attributed to a sharp reduction in dark current due to lower defect density. Photoluminescence and cathodoluminescence spectra revealed a significant reduction in defect-related emissions for films deposited at P = 200 W, confirming fewer intrinsic defects. Raman spectroscopy also showed a decrease in defect-related vibrational modes in the same films. Time-Resolved Microwave Conductivity (TRMC) measurements further supported these findings, demonstrating rapid recombination of charge carriers at 200 W, indicative of low trap densities. These results suggest that precise control of ECWR power allows for optimization of the defect concentration and crystallinity in ZnO films, paving the way for the development of high-sensitivity VUV photodetectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829018PMC
http://dx.doi.org/10.1038/s41598-025-88921-5DOI Listing

Publication Analysis

Top Keywords

films deposited
12
electron cyclotron
8
cyclotron wave
8
wave resonance
8
resonance plasma
8
zno thin
8
thin films
8
zno films
8
control ecwr
8
ecwr power
8

Similar Publications

New horizons in synthesis, functionalization, and deposition of advanced materials using multifunctional organic alkalizers.

Adv Colloid Interface Sci

September 2025

Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada. Electronic address:

This review describes new strategies in the use of multifunctional organic alkalizers (OA) for the fabrication of advanced functional materials. OA facilitate solubilization and delivery of poorly solubilized drugs through the formation of drug-OA complexes and supramolecular gels. OA are applied for the synthesis of materials for biomedical, energy storage, catalytic, photovoltaic, sensor, and electronic applications.

View Article and Find Full Text PDF

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF

Cicada rib-inspired tough films through nanoconfined crystallization for use in acoustic transducers.

Sci Adv

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China.

Acoustic transducers require films that demonstrate both toughness and fatigue resistance, presenting notable challenges when achieved through conventional nanoscale reinforcing strategies. Here, we found that the rib structure of a cicada's tymbal exhibits exceptional toughness and fatigue resistance, attributed to its unique architecture composed of alternating soft and stiff polymer layers. Inspired by this rib structure, we developed a robust artificial rib film (ARF) using a nanoconfined crystallization strategy that involves the deposition of soft polyethylene oxide and stiff phenol formaldehyde.

View Article and Find Full Text PDF

Tuning the Electrical Property and Electronic Band Structures of Organic Semiconductors via Surface Tension.

J Phys Chem Lett

September 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.

View Article and Find Full Text PDF

The development of ultrablack coatings with exceptional absorption (>98%) has historically faced significant scientific and engineering challenges, primarily due to limitations in material selection, structural design, and practical durability. Considering the difficulties in practical applications of ultrablack materials with micro/nano structures and the limitations of planar ultrablack coatings in optical performance, we introduce an innovative integration of conventional planar ultrablack coatings with a specifically engineered trilayer antireflection architecture. This hybrid system incorporates a refractive index distribution (1.

View Article and Find Full Text PDF