Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The breast cancer is one of the most prevalent causes of cancer-related death globally. Preliminary diagnosis of breast cancer increases the patient's chances of survival. Breast cancer classification is a challenging problem due to dense tissue structures, subtle variations, cellular heterogeneity, artifacts, and variability. In this paper, we propose three hybrid deep-transfer learning models for breast cancer classification using histopathology images. These models use Xception model as a base model, and we add seven more layers to fine-tune the base model. We also performed an extensive comparative analysis of five prominent machine-learning classifiers, namely Random Forest Classifier (RFC), Logistic Regression (LR), Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), and Ada-boost. We incorporate the best performing two classifiers, namely RFC and SVC, in the fine-tuned Xception model, and accordingly, they are named as Xception Random Forest (XRF) and Xception Support Vector (XSV), respectively. The fine-tuned Xception model with softmax classifier is termed as Multi-layer Xception Classifier (MXC). These three models are evaluated on the two publically available datasets: BreakHis and Breast Histopathology Images Database (BHID). Our all three models perform better than the state-of-the-art methods. The XRF provides the best performance at the 40 × magnification level on the BreakHis dataset, with an accuracy (ACC) of 94.44%, F1 score (F1) of 94.44%, area under the receiver operating characteristic curve (AUC) of 95.12%, Matthew's correlation coefficient (MCC) of 88.98%, kappa (K) of 88.88%, and classification success index (CSI) of 89.23%. The MXC provides the best performance on the BHID dataset, with an ACC of 88.50%, F1 of 88.50%, AUC of 95.12%, MCC of 77.03%, K of 77.00%, and CSI of 79.13%. Further, to validate our models, we performed fivefold cross-validation on both datasets and obtained similar results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813847 | PMC |
http://dx.doi.org/10.1007/s13755-025-00337-7 | DOI Listing |