Precise Carboxylic Acid-Functionalized Polyesters in Reprocessable Vitrimers.

J Am Chem Soc

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thermosets are valued for their exceptional dimensional stability, mechanical properties, and resistance to creep and chemicals. Their permanent molecular structures limit reshaping, reprocessing, and recycling. Incorporating exchangeable chemical bonds into cross-linked polymer networks provides materials with thermoset-like properties that are also reprocessable. Here, ring-opening copolymerization (ROCOP) of unpurified, commercially available epoxides and succinic anhydride is employed to synthesize well-defined, low molecular weight polyesters with controlled functionalization. Polymer networks are then formed through the catalyzed reaction of these copolymers with the epoxy-containing cross-linker diglycidyl ether of bisphenol A. Catalyst mixtures of zinc bis(2-ethylhexanoate) and 1,8-diazabicyclo(5.4.0)undec-7-ene are used to assess the role of the catalysts in the curing and dynamic bond exchange reactions. Varying the catalyst ratios results in polymer networks with tunable mechanical properties (90% < ε < 450%, 0.30 MPa < UTS < 24 MPa), high creep recovery (%recovery > 90% after five creep cycles), and good reprocessability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869290PMC
http://dx.doi.org/10.1021/jacs.4c14032DOI Listing

Publication Analysis

Top Keywords

polymer networks
12
mechanical properties
8
precise carboxylic
4
carboxylic acid-functionalized
4
acid-functionalized polyesters
4
polyesters reprocessable
4
reprocessable vitrimers
4
vitrimers thermosets
4
thermosets valued
4
valued exceptional
4

Similar Publications

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF

Machine Learning-Aided Screening and Design Rule Discovery for LWIR-Transparent Optical Materials.

J Chem Inf Model

September 2025

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.

The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.

View Article and Find Full Text PDF

Starch-based biopolymer films with nitrogen-doped carbon quantum dots for enhanced barrier functions via surface microarchitectures.

Int J Biol Macromol

September 2025

Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:

This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.

View Article and Find Full Text PDF

Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).

View Article and Find Full Text PDF

Microbial Enzymes for Biomass Conversion.

Annu Rev Microbiol

September 2025

3Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

Plant biomass has emerged as a cornerstone of the global bioenergy landscape because of its abundance and cost-effectiveness. The cell wall of plant biomass is an intricate network of cellulose, hemicellulose, and lignin. The hydrolysis of cellulose and hemicellulose by holoenzymes converts these polymers into monosaccharides and paves the way for the production of bioethanol and other bio-based products.

View Article and Find Full Text PDF