98%
921
2 minutes
20
Introduction: The prognosis of ground glass opacity featured lung adenocarcinomas (GGO-LUAD) is significantly better than that of solid nodule featured lung adenocarcinomas (SN-LUAD), but the specific reasons behind their indolent tumor behavior are still unclear. The purpose of this study is to investigate their differences in intratumoral microvessels, related angiogenic factors and important stromal cells.
Methods: Thirty patients (15 paired patients only with GGO or SN) diagnosed with pathological stage 0-I lung adenocarcinoma who underwent surgical treatment were included into this study. Immunohistochemistry was performed to stain the blood vessel markers (CD31, CD34 and CD105), LYVE-1, the cancer-associated fibroblasts (CAFs) markers (α-SMA and S100A4), TGF-β and HIF-1α from 30 patients tissue sections. At the same time, Ki67 Labeling Index (LI) extracted from pathological report of all patients was also analyzed.
Results: GGO-LUAD is more abundant than SN-LUAD in lymphatic vessel density (LVD), but similar in total microvessel density (CD31 + MVD). However, GGO-LUAD is significantly lower than SN-LUAD in CD34 + MVD and CD105 + MVD. In terms of TGF-β, HIF-1α expression and Ki67 LI level, GGO-LUAD was also significantly weaker than SN-LUAD. Moreover, the distribution of CAFs in GGO-LUAD is less than that in SN-LUAD. Regardless of the pathological type (adenocarcinoma in situ (AIS) or minimally invasive adenocarcinoma (MIA) or invasive lung adenocarcinoma (IAC)), there is no difference in any of the above indicators in GGO-LUAD.
Conclusions: Our finding displays that GGO-LUAD was significantly lower than SN-LUAD in CD34 + MVD and CD105 + MVD reflecting tumor angiogenesis, and the distribution of CAFs and factors related to tumor angiogenesis were also significantly lower in GGO-LUAD, which may indicate that the weak ability of angiogenesis might be the reason for the good prognosis of GGO-LUAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825439 | PMC |
http://dx.doi.org/10.1007/s12672-025-01898-5 | DOI Listing |
Cardiovasc Intervent Radiol
September 2025
The Department of Radiology, Wakayama Medical University, Wakayama, Japan.
Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.
View Article and Find Full Text PDFChin Med J (Engl)
September 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi 710032, China.
The success of chimeric antigen receptor T (CAR-T) cells therapy for hematologic malignancies has sparked interest in potential applications for solid tumors. However, unlike the homogeneous, dynamic, and nutrient-rich hematologic environment, CAR-T cells must overcome the complex tumor microenvironment. Ensuring efficient contact with tumor cells remains a primary challenge to enhance the efficacy of CAR-T cell therapy.
View Article and Find Full Text PDFCell Rep Med
August 2025
Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:
Despite the clinical use of anti-vascular endothelial growth factor (VEGF) antibodies (AVAs) in cancer therapy, resistance frequently develops, leading to disease progression. To address this, we identify a previously unknown role for breast cancer type 1 susceptibility protein (BRCA1)-associated RING domain 1 (BARD1) in modulating AVA sensitivity. Epigenetic modulation-via global and targeted DNA methylation-reveals BARD1 as a key regulator of angiogenesis.
View Article and Find Full Text PDFBiology (Basel)
July 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
Natural products, characterized by their structural novelty, multi-target capabilities, and favorable toxicity profiles, represent a prominent reservoir for the discovery of innovative anticancer therapeutics. In the current investigation, we identified ajuforrestin A, a diterpenoid compound extracted from Maxim, as a potent agent against lung cancer. In vitro, this compound markedly curtailed the proliferation of A549 cells.
View Article and Find Full Text PDFDiscov Oncol
September 2025
Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
Objective: This research seeks to comprehensively explore the expression patterns of Angiopoietin-2 (ANGPT2) in pan-cancer and examine its relationship with clinical outcomes, tumor immune microenvironment dynamics, and biological functions, with particular emphasis on skin cutaneous melanoma (SKCM).
Methods: Data from six databases, including UCSC Xena, TCGA, GTEx, TIMER2.0, GEPIA, and cBioPortal, were analyzed to assess ANGPT2 expression in pan-cancer.