98%
921
2 minutes
20
Chronic stress constitutes a major precipitating factor for Major Depressive Disorder (MDD), and comprehending individual differences in stress responses is crucial for the development of effective intervention strategies for MDD. Recent studies indicate that an individual's vulnerability to chronic stress is closely associated with gut microbiota composition, but the underlying mechanisms remain unclear. This study aims to investigate whether the gut microbiota and its metabolites can serve as gut-brain signaling molecules and explores how the gut microbiota affects stress sensitivity. Here, we showed that gut microbiome-derived indole-3-carboxaldehyde (I3C) can act as a gut-brain signaling molecule that links tryptophan metabolism by gut microbes to stress vulnerability in the host. First, we identified a specific reduction in gut microbiome-derived I3C levels in the hippocampus and colon through untargeted and targeted metabolomic analyses. Then, the study of gut microbiota suggested that the relative abundance of lactobacillus was reduced significantly in stress-susceptible rats, whereas fecal microbiota transplantation regulates stress vulnerability. Furthermore, supplementation with I3C and the representative I3C-producing strain, Lactobacillus reuteri, was shown to alleviate depression-like behaviors induced by chronic stress. Further research confirms that I3C can inhibit neuroinflammation and promote hippocampal neurogenesis through the aryl hydrocarbon receptors (AhR) signal pathway, thereby mitigating the host's susceptibility to stress. In conclusion, our findings elucidate that the gut microbiome-derived-I3C can help buffer the host's stress through the AhR/SOCS2/NF-κB/NLRP3 pathway, providing a gut-brain signaling basis for emotional behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2025.107654 | DOI Listing |
Probiotics Antimicrob Proteins
September 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
Ethnic fermented foods represent a significant repository for discovering novel probiotic entities. These fermented foods, entrenched in indigenous practices, have conserved a distinct microbiota through generations. Exploration of these fermented foods could yield microbial consortia capable of transforming human health.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.
Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.
View Article and Find Full Text PDFGut Microbes
December 2025
Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD, USA.
Parity, the number of pregnancies carried beyond 20 weeks, influences the maternal gut microbiome. However, whether parity modulates the infant microbiome longitudinally remains underexplored. To address this, 746 infants in a longitudinal cohort study were assessed.
View Article and Find Full Text PDFFood Funct
September 2025
Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
It is unknown how human health is affected by the current increased consumption of ultra-processed plant-based meat analogues (PBMA). In the present study, rats were fed an experimental diet based on pork or a commercial PBMA, matched for protein, fat, and carbohydrate content for three weeks. Rats on the PBMA diet exhibited metabolic changes indicative of lower protein digestibility and/or dietary amino acid imbalance, alongside increased mesenteric (+38%) and retroperitoneal (+20%) fat depositions despite lower food and energy intake.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2025
International Joint Center, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
Despite undisputed success of orthopaedic procedures, surgical site infections (SSI) such as periprosthetic joint infection (PJI) continues to compromise the outcome and result in major clinical and economic burden. The overall rate of infection is expected to rise in the future resulting in significant associated mortality and morbidity. Traditional concepts have largely attributed the source of PJI to exogenous pathogens.
View Article and Find Full Text PDF