98%
921
2 minutes
20
The perennial shrub Forsythia ovata Nakai, native to the Korean Peninsula, has a highly restricted natural habitat, occurring only in a small area within the Baekdudaegan Mountain Range located in Gangwon-do Province. These characteristics give this species high conservation value, but there is a significant lack of genetic concerning about its populations for conservation purposes. In this study, we utilized genotyping-by-sequencing (GBS) to examine the genetic diversity and population structure of F. ovata. Our analysis including 5,017 single nucleotide polymorphisms (SNPs) from 72 individuals, representing nine distinct populations. The results revealed a mean expected heterozygosity (He) of 0.212, indicating a moderate level of genetic diversity within the species. Additionally, a relatively low levels of genetic differentiation (FST) and high gene flow (Nm) between populations were detected. The analysis of molecular variance (AMOVA) results indicated that most genetic variation occurred within individuals, accounting for 86.66% of the total variance. In contrast, only 6.90% and 6.44% of the molecular variance was attributed to differences among individuals and between populations, respectively. Considering the results of Bayesian structure analysis on the basis of ∆ K, principal coordinate analysis and phylogenetic analysis, we propose two management units for conservation. In addition, given the current conditions faced by F. ovata, both in situ and ex situ conservation should be considered for some populations (SG and BD).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825039 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317278 | PLOS |
JCO Precis Oncol
September 2025
Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA.
Purpose: mutations are classically seen in non-small cell lung cancers (NSCLCs), and EGFR-directed inhibitors have changed the therapeutic landscape in patients with -mutated NSCLC. The real-world prevalence of -mutated ovarian cancers has not been previously described. We aim to determine the prevalence of pathogenic or likely pathogenic mutations in ovarian cancer and describe a case of -mutated metastatic ovarian cancer with a durable response to osimertinib, an EGFR-directed targeted therapy.
View Article and Find Full Text PDFJCO Precis Oncol
September 2025
Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
Purpose: Tumor comprehensive genomic profiling (CGP) may detect potential germline pathogenic/likely pathogenic (P/LP) alterations as secondary findings. We analyzed the frequency of potentially germline variants and large rearrangements (LRs) in the RATIONAL study, an Italian multicenter, observational clinical trial that collects next-generation sequencing-based tumor profiling data, and evaluated how these findings were managed by the enrolling centers.
Patients And Methods: Patients prospectively enrolled in the pathway-B of the RATIONAL study and undergoing CGP with the FoundationOne CDx assays were included in the analysis.
Pol Merkur Lekarski
September 2025
NEAPOLIS UNIVERSITY, NEAPOLIS, CYPRUS.
Objective: Aim: To provide a comprehensive understanding of the profound developmental and medical challenges associated with this condition..
Patients And Methods: Materials and Methods: Τhis study employed a narrative review methodology, drawing upon a wide range of peer-reviewed scientific literature, clinical guidelines, and case studies.
Sci Adv
September 2025
The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
Influenza A viruses remain a global health threat, yet no universal antibody therapy exists. Clinical programs have centered on neutralizing mAbs, only to be thwarted by strain specificity and rapid viral escape. We instead engineered three non-neutralizing IgG2a mAbs that target distinct, overlapping epitopes within the conserved N terminus of the M2 ectodomain (M2e).
View Article and Find Full Text PDFSci Adv
September 2025
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain low, often because of insufficient milk production. The molecular causes of low milk production are not well understood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum stages, were analyzed using genomic and microbiome techniques.
View Article and Find Full Text PDF