Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811359 | PMC |
http://dx.doi.org/10.1007/s10068-024-01701-1 | DOI Listing |