Machine Learning-Based Fault Detection and Exclusion for Global Navigation Satellite System Pseudorange in the Measurement Domain.

Sensors (Basel)

Department of Civil and Environmental Engineering, Imperial College London, Skempton Building, South Kensington, London SW7 2BU, UK.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Global Navigation Satellite Systems (GNSS) support numerous applications, including mission-critical ones that require a high level of integrity for safe operations, such as air, maritime, and land-based navigation. Fault Detection and Exclusion (FDE) is crucial for mission-critical applications, as faulty measurements significantly impact system integrity. FDE can be applied within the positioning algorithm in the measurement's domain and the integrity monitoring domain. Previous research has utilized a limited number of Machine Learning (ML) models and Quality Indicators (QIs) for the FDE process in the measurement domain. It has not evaluated the pseudorange measurement fault thresholds that need to be detected. In addition, ML models were mainly evaluated based on accuracy, which alone does not provide a comprehensive evaluation. This paper introduces a comprehensive framework for traditional ML-based FDE prediction models in the measurement domain for pseudorange in complex environments. For the first time, this study evaluates the fault detection thresholds across 40 values, ranging from 1 to 40 m, using six ML models for FDE. These models include Decision Tree, K-Nearest Neighbors (KNN), Discriminant, Logistic, Neural Network, and Trees (Boosted, Bagged, and Rusboosted). The models are comprehensively assessed based on four key aspects: accuracy, probability of misdetection, probability of fault detection, and the percentage of excluded data. The results show that ML models can provide a high level of performance in the FDE process, exceeding 95% accuracy when the fault threshold is equal to or greater than 4 m, with KNN providing the highest FDE performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820576PMC
http://dx.doi.org/10.3390/s25030817DOI Listing

Publication Analysis

Top Keywords

fault detection
16
measurement domain
12
detection exclusion
8
global navigation
8
navigation satellite
8
pseudorange measurement
8
high level
8
fde process
8
fde
7
models
7

Similar Publications

This paper presents a novel multiscale signal processing framework for power quality disturbance (PQD) and cyber intrusion detection in smart grids, combining Non-Subsampled Contourlet Transform (NSCT), Split Augmented Lagrangian Shrinkage Algorithm (SALSA), and Morphological Component Analysis (MCA). A key innovation lies in an adaptive weighting mechanism within NSCT's directional sub bands, enabling dynamic energy redistribution and enhanced representation of both low-frequency anomalies (e.g.

View Article and Find Full Text PDF

Image monitoring is an important research problem that has wide applications in various fields, including manufacturing industries, satellite imaging, medical diagnostics, and so forth. Traditional image monitoring control charts perform rather poorly when the changes occur at very small regions of the image, and when the changes of image intensity values are small in those regions. Their performances get worse if the images contain noise, and the changes occur near the edges of image objects.

View Article and Find Full Text PDF

Breast cancer is highlighted in recent research as one of the most prevalent types of cancer. Timely identification is essential for enhancing patient results and decreasing fatality rates. Utilizing computer-assisted detection and diagnosis early on may greatly improve the chances of recovery by accurately predicting outcomes and developing suitable treatment plans.

View Article and Find Full Text PDF

In recent years, electric vehicles (EVs) have become increasingly popular, driven by advancements in battery technology, growing environmental awareness, and the demand for sustainable transportation. Compared to internal combustion engines, EVs not only produce fewer emissions but also offer greater energy efficiency, leading to reduced operating costs. Despite these advantages, concerns about battery failures have been a significant safety issue for EVs.

View Article and Find Full Text PDF

Misalignment is among the most frequent mechanical faults in rotating electrical machines, often resulting in partial or complete motor failure over time. To tackle this issue, the present study proposes an innovative methodology for diagnosing misalignment faults in rotating electrical machines. The method integrates the dual-tree complex wavelet transform with a refined composite multiscale fluctuation dispersion entropy algorithm (DTCWT-RCMFDE) for feature extraction, combined with the least-squares support vector machines algorithm (LSSVM) for fault classification.

View Article and Find Full Text PDF