Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Zinc oxide (ZnO) semiconductors are renowned for their cost-effective synthesis and superior catalytic attributes, making them prominent in environmental remediation applications. This study presents the synthesis of ZnO nanoparticles (NPs) with distinct morphologies, achieved by modulating citric acid concentrations in an ultrasonic-assisted hydrothermal process. The photocatalytic efficacy of these ZnO NPs in degrading malachite green (MG), a persistent environmental pollutant, was thoroughly investigated. Our findings reveal a strong correlation between the morphological features of ZnO catalysts and their photodegradation performance. Among the synthesized NPs, the chrysanthemum-shaped ZnO (denoted as USZ-0.1) demonstrated exceptional photocatalytic activity, attributed to its enhanced surface area and optimized nano-crystal aggregation. This structure facilitated the generation of a higher concentration of reactive oxygen species, leading to over 96.5% degradation of MG within 40 min under simulated sunlight in an acidic medium. This study underscores the potential of morphological manipulation in enhancing the photocatalytic properties of ZnO NPs for environmental applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820828 | PMC |
http://dx.doi.org/10.3390/molecules30030466 | DOI Listing |