Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cu-bearing titanium alloys exhibit promising antibacterial properties for clinical use. A novel Ti6Al4V-Ti5Cu composite alloy is developed using powder bed fusion (selective laser sintering, SLM) and spark plasma sintering (SPS). SLM produces a triple periodic minimal surface (TPMS) lattice structure from Ti6Al4V, which is then filled with Ti-5Cu powders and sintered using SPS. Microstructural analysis confirms a well-bonded interface between Ti6Al4V and Ti-5Cu could be achieved through SLM-SPS technology. The composite primarily showcases laths α phase, with TiCu precipitates in the Ti-5Cu region. Electrochemical assessments reveal superior corrosion resistance in the Ti6Al4V-Ti5Cu composite compared to SLM-Ti6Al4V and SPS-Ti-5Cu. The antibacterial rate of the TPMS structure exceeds 90%, and that of TCCU-90 reaches as high as 99%, manifesting robust antibacterial activity. These findings suggest a strategy for creating biomimetic alloys that seamlessly combine structure and multifunctionality within biomedical materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11818114 | PMC |
http://dx.doi.org/10.3390/ma18030491 | DOI Listing |