98%
921
2 minutes
20
Metabolism in biological systems involves the continuous formation and breakdown of chemical and structural components, driven by chemical energy. In specific, metabolic processes on cellular membranes result in in situ formation and degradation of the constituent phospholipid molecules, by consuming fuel, to dynamically regulate the properties. Synthetic analogs of such chemically fueled phospholipid vesicles have been challenging. Here we report a bio-inspired approach for the in situ formation of phospholipids, from water soluble precursors, and their fuel driven self-assembly into vesicles. We show that the kinetic competition between anabolic and catabolic-like reactions leads to the formation and enzymatic degradation of the double-tailed, vesicle-forming phospholipid. Spectroscopic and microscopic analysis demonstrate the formation of transient vesicles whose lifetime can be easily tuned from minutes to hours. Importantly, our design results in the formation of uniform sized (65 nm) vesicles simply by mixing the precursors, thus avoiding the traditional complex methods. Finally, our sub-100 nm vesicles are of the right size for application in drug delivery. We have demonstrated that the release kinetics of the incorporated cargo molecules can be dynamically regulated for potential applications in adaptive nanomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202500824 | DOI Listing |
ACS Omega
September 2025
Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
Decellularized tissues are used as biomaterials for transplantation. Many decellularized tissues in clinical applications are prepared using surfactants; however, we have developed a new decellularization method that uses subcritical dimethyl ether (DME) instead of surfactants. Subcritical DME perfusion is usually used for lipid extraction; therefore, by perfusing tissues with subcritical DME, phospholipid cell membranes may be destroyed.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Microbiology, School of Medicine, Kitasato University, Sagamihara-shi, 252-0374 Kanagawa, Japan.
Background: Vitamin D decomposition products target a myristic acid sidechain of the predominant glycerophospholipid constructed in the biomembranes of causing gastric cancer in humans, and disrupt the membrane structure, followed by bacteriolysis. No earlier studies, however, elucidate whether vitamin D decomposition products interact with the glycerophospholipids that construct the eukaryotic biomembranes and confer whatever cell disorders.
Methods: A gastric cancer cell line, MKN45, and a non-cancer cell line, Vero, were used in this study.
Bioorg Med Chem Lett
September 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine. Electronic address:
Phospholipid-derived nanocarriers represent a versatile and chemically customizable class of drug delivery systems that self-assemble into bilayered vesicles due to their intrinsic amphiphilicity. These systems can encapsulate both hydrophilic and hydrophobic drugs through non-covalent interactions and manipulation of lipid phase behavior. This review examines the molecular and supramolecular principles underlying the formation, stability, and functional performance of key phospholipid-based nanocarriers-including liposomes, transferosomes, ethosomes, invasomes, phytosomes, pharmacosomes, and virosomes.
View Article and Find Full Text PDFACS Nano
September 2025
Departments of Biomedical Engineering and Chemical Engineering, University of California, Davis, California 95616, United States.
Bolaamphiphiles─amphiphilic molecules with polar groups at each of the two ends of a hydrophobic tail with pH-sensitive spontaneous molecular curvatures, endow membranes of extremophiles with an exquisite balance between stability (or robustness) and adaptability (or plasticity). But how the presence (or real-time insertion) of bolaamphiphiles influences lamellar lipid membranes is poorly understood. Using a combination of time-resolved confocal fluorescence microscopy, in situ small-angle X-ray and neutron scattering (SAXS and SANS), and neutron spin echo (NSE) measurements, we monitor here the pH-dependent interactions of nanoscopic vesicles of a representative bolaamphiphile─a glucolipid consisting of a single glucose headgroup and a C18:1 (oleyl) fatty acid tail (G-C18:1)─with the membranes of an essentially cylindrical fluid-phase phospholipid (dioleoylphosphatidylcholine, DOPC).
View Article and Find Full Text PDFThe ATP-binding cassette subfamily A member 3 (ABCA3) protein on the limiting membrane of lamellar bodies in alveolar type 2 (AT2) cells transports phospholipids required for pulmonary surfactant assembly. ABCA3 deficiency results from biallelic pathogenic variants in and causes progressive neonatal respiratory failure or childhood interstitial lung disease (chILD). Supportive/compassionate care or lung transplantation are the only current definitive treatments for ABCA3 deficiency and progressive respiratory failure.
View Article and Find Full Text PDF