98%
921
2 minutes
20
The self-assembly of nanoparticles allows the fabrication of complex, nature-inspired architectures. Among these, Voronoi tessellations─intricate patterns found in many natural systems such as insect wings and plant tissues─have broad implications across materials science, biology, and geography. However, replicating these irregular yet organized features at the nanoscale through nanoparticle self-assembly remains challenging. Here, we introduce a confinement transformation method to generate two-dimensional (2D) Voronoi patterns by converting metal-organic frameworks, specifically zeolitic imidazolate framework-8 (ZIF-8), into layered hydroxides. The process begins with the self-assembly of ZIF-8 particles into densely packed monolayers at the liquid-air interface, driven by the Marangoni effect. Subsequent Ni-induced etching converts the floating ZIF-8 monolayer into a freestanding membrane composed of interconnected polygonal cells, closely resembling the geometric characteristics of Voronoi tessellations. We systematically investigate the parameters affecting the transformation of ZIF-8 particles, shedding light on the mechanism governing Voronoi pattern formation. Mechanical testing and simulations demonstrate that the resulting cellular membranes exhibit enhanced stress distribution and crack resistance, attributed to their Voronoi-patterned architecture. These robust, monolithic membranes composed of Ni-based hydroxides, when serving as catalyst support materials, can synergistically enhance the intrinsic activity of Pt catalysts for alkaline hydrogen evolution reaction by facilitating water dissociation. This work presents a promising approach for creating nature-inspired materials with optimal stress management, superior mechanical properties, and potential catalytic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c17866 | DOI Listing |
Biochem Biophys Rep
December 2025
Henan University of Chinese Medicine, Zhengzhou, 450046, China.
Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.
View Article and Find Full Text PDFRSC Chem Biol
September 2025
Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet 17165 Solna Sweden
Labeling the plasma membrane for advanced imaging remains a significant challenge. For time-lapse live cell imaging, probe internalization and photobleaching are major limitations affecting most membrane-specific dyes. In fixed or permeabilized cells, many membrane probes either lose signal after fixation or fail to remain localized to the plasma membrane.
View Article and Find Full Text PDFFront Aging Neurosci
August 2025
Yan'an Medical College of Yan'an University, Yan'an, Shaanxi, China.
The intramembrane aspartic protease, γ-secretase, is a heterotetrameric protein complex composed of four integral membrane proteins: presenilin (PSEN), nicastrin (NCT), Anterior pharynx defective-1 (APH-1), and presenilin enhancer 2 (PEN-2). These components are sequentially assembled into a functional complex. γ-secretase is ubiquitously expressed in all cells and tissues and exhibits enzymatic activity akin to "molecular scissors" by cleaving various type I transmembrane proteins.
View Article and Find Full Text PDF