98%
921
2 minutes
20
Background: Previous studies demonstrated better outcomes for mCRPC (metastatic castration resistant prostate cancer) patients with higher abiraterone exposure (minimal plasma concentration (C) > 8.4 ng/mL), but around 40% of patients experience exposure below this target. Pharmacokinetic (PK)-guided interventions following Therapeutic Drug Monitoring (TDM) could optimise exposure and outcomes. We aimed to evaluate the feasibility and effect on treatment outcomes of abiraterone TDM.
Methods: Patients with low exposure levels (Low-group, C < 8.4 ng/mL) got a PK-guided intervention. We compared exposure, adverse event (AE) incidence, time on treatment (ToT) and Prostate-Specific Antigen response rate (PSArr) between the Low-group and Adequate-group.
Results: We included 167 mCRPC patients, with 56 in the Adequate-group and 111 in the Low-group. Interventions were successful 86% of the time. Exposure between groups became corresponding (Low-group: 7.95 to 20.5 ng/mL, Adequate-group: 20.8 ng/mL, p = 0.72) with comparable AE incidence (17% vs. 23%, p = 0.4). Median ToT and PSArr were similar (351 vs. 379 days, p = 0.35; 61.3% vs. 67.9%, p = 0.51).
Conclusions: PK-guided interventions improved above target exposure from 33.5% to 81.4% of patients without additional AEs. While historically, low exposure patients had significantly shorter survival, PK-guided interventions eliminated this disparity. As interventions are effective, low-cost and safe, TDM for abiraterone should be considered to enhance treatment outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961573 | PMC |
http://dx.doi.org/10.1038/s41416-025-02954-1 | DOI Listing |
J Cell Mol Med
September 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh.
Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales, Australia.
Introduction: Risperidone is approved for behaviors and psychological symptoms of dementia (BPSD), despite modest efficacy and known risks. Identifying responsive symptoms, treatment modifiers, and predictors is crucial for personalized treatment.
Method: A one-stage individual participant data meta-analysis of six randomized controlled trials (risperidone: n = 1009; placebo: N = 712) was conducted.
J Neurol
September 2025
Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
Objective: To evaluate the clinical efficacy of tocilizumab, a interleukin-6 (IL-6) receptor blocker, for the treatment of acute necrotizing encephalopathy (ANE).
Methods: PubMed, Cochrane Library, Embase, and Web of Science were searched for systematic review based on PRISMA guidelines. ANE patients treated with and without tocilizumab were included.
Environ Health Prev Med
September 2025
Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, University of Toyama.
Background: Hyperthermia (HT), while a cancer treatment approach, isn't always effective alone. Therefore, identifying hyperthermia enhancers is crucial. We demonstrated that Mito-TEMPO ([2-[(1-Hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) amino]-2-oxoethyl]-triphenylphosphanium, MT) acts as a potent thermosensitizer, promoting cell death in human cervical cancer (HeLa) cells.
View Article and Find Full Text PDFInjury
August 2025
Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, Israel; Department of Military Medicine ("Tzameret"), Faculty of Medicine, The Hebrew University of Jerusalem, and the Israel Defense Fo
Background: Hemorrhage remains the principal cause of death on the battlefield. It is suggested that Tranexamic acid (TXA) can improve survival of severely-bleeding casualties. The intravenous approach is not always available in the pre-hospital setting.
View Article and Find Full Text PDF