A comparative study of antibiotic resistance patterns in Mycobacterium tuberculosis.

Sci Rep

Department of Computer and Information Science and Engineering, University of Florida, 1889 Museum Road, Gainesville, 32611, FL, USA.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study leverages the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) to analyze over 27,000 Mycobacterium tuberculosis (MTB) genomic strains, providing a comprehensive and large-scale overview of antibiotic resistance (AMR) prevalence and resistance patterns. We used MTB++, which is the newest and most comprehensive AI-based MTB drug resistance profiler tool, to predict the resistance profile of each of the 27,000 MTB isolates and then used feature analysis to identify key genes that were associated with the resistance. There are three main contributions to this study. Firstly, it provides a detailed picture of the prevalence of specific AMR genes in the BV-BRC dataset as well as their biological implications, providing critical insight into MTB's resistance mechanisms that can help identify genes of high priority for further investigation. The second aspect of this study is to compare the prevalence of antibiotic resistance across previous studies that have addressed both the temporal and geographical evolution of MTB drug resistance. Lastly, this study emphasizes the need for targeted diagnostics and personalized treatment plans. In addition to these contributions, the study acknowledges the limitations of computational prediction and recommends future experimental validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814411PMC
http://dx.doi.org/10.1038/s41598-025-89087-wDOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
12
resistance
9
resistance patterns
8
mycobacterium tuberculosis
8
mtb drug
8
drug resistance
8
contributions study
8
study
5
comparative study
4
study antibiotic
4

Similar Publications

Objectives: Acute pyelonephritis (APN) is a common diagnosis among patients presenting to the Emergency Department (ED). It is treated by empiric antibiotics within the ED. With a rise in antimicrobial resistance globally, it is unknown whether patients are being managed with empiric antibiotics that are appropriate for the causative organisms of APN.

View Article and Find Full Text PDF

Cefepime (FEP), a fourth-generation cephalosporin combined with tazobactam (TAZ), a β-lactamase inhibitor, is being developed by Wockhardt as a pharmacodynamically optimized fixed dose combination (FEP-2 g + TAZ-2 g) for the treatment of multidrug-resistant Gram-negative infections. To undertake an exposure-response analysis for establishing pharmacokinetic (PK)/pharmacodynamic (PD) targets, it is crucial to characterize the PK profile of compounds in surrogate compartments, such as plasma and lung, in clinically relevant animal infection models used to evaluate efficacy. In the current study, PKs of FEP and TAZ were assessed in plasma and in epithelial lining fluid (ELF) of neutropenic noninfected, lung-infected, and thigh-infected mice.

View Article and Find Full Text PDF

Patients with traumatic injuries who develop ventilator-associated pneumonia (VAP) incur a higher risk of developing multi-drug resistance. Shorter duration of antibiotic agents for early VAP at five days may reduce antibiotic agent exposure without worsening patient outcomes. This retrospective cohort study performed at a Level I Trauma Center included adult (≥16 years old) patients with trauma diagnosed with bronchoalveolar lavage (BAL)-proven early (within four days of intubation) bacterial VAP.

View Article and Find Full Text PDF

Background: Innovative antibiotic discovery strategies are urgently needed to successfully combat infections caused by multi-drug-resistant bacteria.

Methods: We employed a direct screening approach to identify compounds with antimicrobial and antimicrobial helper-drug activity against Gram-positive and Gram-negative bacteria. We used this platform in two different strains of methicillin-resistant (MRSA) and aminoglycoside-resistant strains of to screen for antimicrobials compounds, which potentiate the activity of aminoglycoside antibiotics.

View Article and Find Full Text PDF

Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.

View Article and Find Full Text PDF