Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carborane has been widely studied for its excellent tumor-targeting and other properties, but its poor water solubility and inability to visualize the treatment limit the application of carborane. Therefore, in this paper, two different indol-nido-carbrane potassium salt-crown ether-sodium alginate polymers were obtained by designing an indole dye with good fluorescence performance, combining it with nido-carbrane potassium salt, and then loading it into sodium alginate and different crown ethers. Among them, the polymer (INC-2) formed by loading dipropenone-18-crown-6 and sodium alginate is considered to be the most promising anti-tumor drug with good fluorescence properties. The optical properties test showed that INC-2 had good fluorescence properties. The results of atomic force microscopy (AFM) and transmission electron microscopy (TEM) manifested that INC-2 was a smooth and uniform sphere, which was conducive to absorption in vivo. Through the cell proliferation toxicity test (CCK8), it was found that when the concentration was 300 μg/mL, the highest inhibition rates of INC-2 on HCT-116, HeLa and L02 were 53.43 %, 61.19 % and 17.06 %, respectively, demonstrating that the polymer had significant anti-tumor activity and low cytotoxicity. In addition, INC-2 was applied to cell imaging, which could enter and be well absorbed by HCT-116 and HeLa cells. Further in vivo imaging experiments showed that INC-2 could be well targeted to the gastrointestinal tract of mice. In summary, this design not only solves the problem of poor water solubility of carborane, improves its bioavailability, but also provides excellent visual fluorescence targeting effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2025.125858DOI Listing

Publication Analysis

Top Keywords

good fluorescence
12
poor water
8
water solubility
8
sodium alginate
8
fluorescence properties
8
hct-116 hela
8
inc-2
6
fluorescence
5
properties
5
multi-component driven
4

Similar Publications

Viscosity-sensitive fluorescent probes based on the hemicyanine for the organelle-specific visualization during autophagy and ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g

The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.

View Article and Find Full Text PDF

Objective: To investigate the clinicopathological features, diagnostic value, risk model and prognostic significance of epithelioid hemangioendothelioma (EHE) in a retrospective cohort of 115 cases.

Methods: A total of 115 cases of EHE diagnosed in the Cancer Hospital of the Chinese Academy of Medical Sciences (NCC) from 2011 to 2023 were collected. The clinical and pathological features of EHE were reviewed by Fluorescence hybridization (FISH) and Immunohistochemistry (IHC).

View Article and Find Full Text PDF

Use of blue fluorescent protein Electra2 for live-cell imaging in .

MicroPubl Biol

August 2025

Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.

Because of its good spectral separation from green (GFP) and red (RFP) fluorescent proteins, blue fluorescent protein (BFP) is essential for multicolor live cell imaging. However, the commonly used bright mTagBFP2 strongly perturbs the cellular localization of Lifeact, an F-actin marker. As an alternative, we tested the expression of Electra2 in .

View Article and Find Full Text PDF

This paper presents a metal-free synthetic protocol for assembling novel benzofuro[2,3-]pyridin-3-ols (BFPYOLs) using 2,3-disubstituted benzofuran derivatives with good yield. The method's advantages include the absence of an expensive metal catalyst, organic ligands, and easily accessible starting materials. The photophysical properties of the synthesized BFPYOLs are investigated, revealing that the largest is displayed by compound 7g at 389 nm, while the largest is observed in compound 7i at 494 nm in DMSO solvent.

View Article and Find Full Text PDF

The pleiotropic odorant binding protein CaspOBP12 involved in perception of Ceutorhynchus asper for plant volatiles and pesticides.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural

The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.

View Article and Find Full Text PDF