Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autonomous navigation of cyborg insects in complex environments remains a challenging issue. Cyborg insects, which combine biological organisms with electronic components, offer a unique approach to tackle such challenges. This study presents a biohybrid behavior-based navigation (BIOBBN) system that enables cyborg cockroaches to navigate complex environments autonomously. Two navigation algorithms were developed: reach-avoid navigation for less complex environments and adaptive reach-avoid navigation for more challenging scenarios. This algorithm, especially the second one, leveraged the cockroaches' natural behaviors, such as wall-following and climbing, to navigate around and over obstacles. Experiments in simulated environments, including sand and rock-covered surfaces, demonstrate the effectiveness of the BIOBBN system in enabling cyborg cockroaches to navigate and reach target locations. The denser second scenario required more time due to increased obstacle avoidance and natural climbing behavior. Overall performance was promising, highlighting the potential of biohybrid navigation for autonomous cyborg insects in navigating complex environments.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2024.0082DOI Listing

Publication Analysis

Top Keywords

complex environments
16
cyborg insects
12
biohybrid behavior-based
8
behavior-based navigation
8
obstacle avoidance
8
biobbn system
8
cyborg cockroaches
8
cockroaches navigate
8
reach-avoid navigation
8
navigation
7

Similar Publications

Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.

View Article and Find Full Text PDF

Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.

View Article and Find Full Text PDF

The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.

View Article and Find Full Text PDF

Rising atmospheric CO exposes plants to high-CO environments, while excessive nitrogen fertilizer use degrades soil, highlighting the need to reduce nitrogen input and cultivate vigorous cucumber seedlings under HC-LN conditions. Calcineurin B-like proteins (CBLs) sense calcium signals and regulate carbon/nitrogen metabolism via CBL-interacting protein kinases (CIPKs), though their roles in cucumber under HC-LN conditions are unclear. Here, we identified seven and 19 genes.

View Article and Find Full Text PDF

The PROtective VEntilation (PROVE) Network is a globally-recognized collaborative research group dedicated to advancing research, education, and collaboration in the field of mechanical ventilation. Established to address critical questions in intraoperative and intensive care ventilation, the network focuses on improving outcomes for patients undergoing mechanical ventilation in diverse settings, including operating rooms, intensive care units, burn units, and resource-limited environments in low- and middle-income countries. The PROVE Network is committed to generating high-quality evidence through a comprehensive portfolio of investigations, including randomized clinical trials, observational research, and meta-analyses.

View Article and Find Full Text PDF