98%
921
2 minutes
20
Predicting the binding poses of ligands targeting RNAs is challenging. Here, we propose that using first-principles quantum mechanics/molecular mechanics (QM/MM) simulations, which incorporate automatically polarization effects, can help refine the structural determinants of ligand/RNA complexes in aqueous solution. In fact, recent advances in massively parallel computer architectures (such as exascale machines), combined with the power of machine learning, are greatly expanding the domain of applicability of these types of notoriously expensive simulations. We corroborate this proposal by carrying out a QM/MM-based study on a ligand targeting CAG repeat-RNA, involved in Huntington's disease. The calculations indeed show a clear improvement in the ligand binding properties, and they are consistent with the NMR measurements, also performed here. Thus, this type of approach may be useful for practical applications in the design of ligands targeting RNA in the near future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849026 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.4c03456 | DOI Listing |
J Am Chem Soc
September 2025
Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
The exceptional performance of ceria (CeO) in catalysis and energy conversion is fundamentally governed by its defect chemistry, particularly oxygen vacancies. The formation of each oxygen vacancy (V) is assumed to be compensated by two localized electrons on cations (Ce). Here, we show by combining theory with experiment that while this 1 V: 2Ce ratio accounts for the global charge compensation, it does not apply at the local scale, particularly in nanoparticles.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Riken, Center for Sustainable Resource Sciences, Saitama 351-0198, Japan.
-Adenosyl-l-methionine (SAM) is well-known as a methyl donor for methyltransferases but also functions as a 3-amino-3-carboxypropyl (3-ACP) donor for 3-ACP transferases. NAT is a 3-ACP transferase which accepts β-lactam antibiotic nocardicin G () and SAM to produce isonocardicin C. Due to the lack of structural information about this enzyme, its reaction mechanism has not been fully identified.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Chemistry, Faculty of Arts and Sciences, Kafkas University, 36040 Kars, Turkey.
In this study, we synthesized a series of novel -acetyl Schiff bases (-) containing 1,2,4-triazole moiety and evaluated their potential as anticancer agents through both experimental and computational approaches. Cytotoxicity assays on prostate cancer (PC) (DU145) and normal epithelial cells (PNT1a) demonstrated selective inhibition, particularly for compounds , , and , with IC values of 73.25, 49.
View Article and Find Full Text PDFMol Divers
August 2025
Department of Biotechnology, School of Bioscience and Technology, Sharda University, Greater Noida, 201310, India.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a major global health burden, particularly due to the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The FtsZ protein, essential for bacterial cytokinesis and lacking a human homolog, presents a selective and non-redundant drug target. In this study, we implemented a comprehensive computational pipeline to identify potential FtsZ inhibitors from the COCONUT natural product database.
View Article and Find Full Text PDF