98%
921
2 minutes
20
Neurotransmitter systems of noradrenaline, dopamine, serotonin and acetylcholine are implicated in cognitive functions such as memory, learning and attention and are known to be altered in neurodegenerative diseases like Alzheimer's disease. Specific brain structures involved in these systems, e.g. the locus coeruleus, the main source of noradrenaline in the cortex, are in fact affected earliest by Alzheimer's disease tau pathology. Preserved volumetric neurotransmitter specific brain areas could therefore be an important neural resource for cognitive reserve in aging. The aim of this study was to determine whether volumes of brain areas known to be high in neurotransmitter receptors are relatively preserved in individuals with lower levels of Alzheimer's disease pathology. Based on the Human Protein Atlas for neurotransmitter receptor distribution, we distinguished between 'areas high and low' in noradrenaline, dopamine, serotonin and acetylcholine and assessed associations of atrophy in those areas with CSF amyloid-ß 42/40, CSF phosphorylated tau protein and cognitive function across healthy controls ( = 122), individuals with subjective cognitive decline ( = 156), mild cognitive impairment or mild Alzheimer's disease dementia ( = 126) using structural equation modelling. CSF pathology markers were inversely correlated and showed a stronger association with disease severity, suggesting distinguishable interrelatedness of these biomarkers depending on the stage of Alzheimer's disease dementia. Across groups, amyloid pathology was linked to atrophy in areas high as well as low in neurotransmitter receptor densities, while tau pathology did not show any significant link to brain area volumes for any of the neurotransmitters. Within disease severity groups, individuals with more amyloid pathology showed more atrophy only in 'areas high in noradrenaline', whereas for dopamine tau pathology was linked to higher volumes in areas low in receptor density possibly indicating compensatory mechanisms. Furthermore, individuals with more tau pathology showed a selective decrease in memory function while amyloid pathology was related to a decline in executive function and language capacity as well as memory function. In summary, our analyses highlight the benefits of investigating disease-relevant factors in Alzheimer's disease using a multivariate multigroup approach. Assessing multivariate dependencies in different disease stages and across individuals revealed selective links of pathologies, cognitive decline and atrophy in particular for areas modulated by noradrenaline, dopamine and serotonin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806415 | PMC |
http://dx.doi.org/10.1093/braincomms/fcaf031 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
Introduction: Mild cognitive impairment (MCI) represents a transitional stage between normal aging and dementia. We investigate associations among cardiovascular and metabolic disorders (hypertension, diabetes mellitus, and hyperlipidemia) and diagnosis (normal; amnestic [aMCI]; and non-amnestic [naMCI]).
Methods: Multinomial logistic regressions of participant data (N = 8737; age = 70.
Nat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
The aging population worldwide faces an increasing burden of age-related conditions, with Alzheimer's disease being a prominent neurodegenerative concern. Drug repurposing, the practice of identifying new therapeutic applications for existing drugs, offers a promising avenue for accelerated intervention. In this study, we utilized the yeast Saccharomyces cerevisiae to screen a library of 1760 FDA-approved compounds, both with and without rapamycin, to assess potential synergistic effects on yeast growth.
View Article and Find Full Text PDFExp Neurobiol
August 2025
Department of Biological Sciences, Konkuk University, Seoul 05029, Korea.
This study investigated the learning strategy preferences of 11-month-old APP/PS1 double transgenic (Tg) mice, a well-established murine model of Alzheimer's disease (AD). APP/PS1 Tg and non-Tg control mice were serially trained in visual and hidden platform tasks in the Morris water maze. APP/PS1 Tg mice performed poorly in visual platform training compared with non-Tg mice but performed as well as non-Tg mice in hidden platform training.
View Article and Find Full Text PDF