A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Supramolecular peptide hydrogel epitope vaccine functionalized with CAR-T cells for the treatment of solid tumors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chimeric antigen receptor T-cell (CAR-T) therapy, which benefits from the perfect combination of gene editing techniques and antibody engineering, has shown outstanding clinical efficacy in hematological malignancies. Solid tumors present the next challenge due to their extremely complicated microenvironment and structural characteristics. Targeting efficiency and persistence are currently bottleneck issues in the clinical treatment of CAR-T. Beyond drugs and cytokines, biomaterials can modulate the immune response, assisting adoptive CAR-T cells in exerting their function. In this study, a supramolecular peptide hydrogel epitope vaccine was designed to serve as both a preparation medium and a reservoir for CAR-T cells. The self-assembling peptide formed a nanofiber scaffold through non-covalent interactions of amphiphilic amino acids and ion stabilizers. Firstly, the complementary peptide conjugated vaccine epitopes and CAR-T target sites were derived from different extracellular domains of the HER2 protein, and the combination treatment improved tumor antigen spreading and targeting efficiency. The epitope hydrogel promoted CAR-T cell proliferation, cytotoxic activity, and lymphocyte subpopulation transformation. Furthermore, the supramolecular peptide epitope vaccine encapsulated CAR-T (SPEV-CAR-T) induced endogenous humoral and cellular immune responses through a sustained release of the hydrogel and CAR-T cells, demonstrating superior anti-tumor effects in an in vivo mouse model. Most importantly, SPEV-CAR-T induced central memory cells in systemic immune tissues, addressing the poor persistence of single CAR-T therapy. The integration and complementation of active and passive immune responses in this all-in-one hydrogel epitope vaccine and CAR-T system facilitated a sequential succession of endogenous and exogenous immune responses, promoting persistent and specific tumor attack. SPEV-CAR-T showed superior therapeutic effects in solid tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804731PMC
http://dx.doi.org/10.1016/j.mtbio.2025.101517DOI Listing

Publication Analysis

Top Keywords

epitope vaccine
16
car-t cells
16
supramolecular peptide
12
hydrogel epitope
12
solid tumors
12
immune responses
12
car-t
11
peptide hydrogel
8
car-t therapy
8
targeting efficiency
8

Similar Publications