Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Weightlessness-induced bone loss (WIBL) refers to the reduction of bone mass and the decline of bone resistance to load in a weightless environment. However, current treatment strategies aimed at increasing bone mass are associated with various limitations and side effects, highlighting the urgent need for safer and more effective therapeutic options to address WIBL.

Purpose: We aimed to further explore the potential mechanism of the anti-WIBL effect of Atractylodes macrocephalon polysaccharide1-1(AMP1-1). To find a better way to treat WIBL and provide new insights for the development of therapeutic drugs for this condition.

Methods: Firstly, the anti-weightlessness bone loss of AMP1-1 was verified by micro-computed tomography (Micro-CT), three-point mechanical bending test and Western Blot (WB). Subsequently, the intestinal barrier was examined using histopathology, immunohistochemistry (IHC), and WB. Finally, validation experiments were performed using fecal microbiota transplantation (FMT). After FMT, 16S rDNA sequencing was used to analyze the gut microbiota composition in the rat feces.

Results: AMP1-1 was able to inhibit WIBL by enhancing bone mass, improving toughness, and increasing osteogenic activity. Meanwhile, AMP1-1 reduced peripheral 5-HT content by restoring enterochromaffin cell function through gut microbiota regulation and tight junction repair. FMT of rat fecal microbiota after gavage of AMP1-1 into tail suspension rats still has the effects of regulating gut microbiota, repairing intestinal barrier and reducing bone loss.

Conclusion: Our results demonstrate that AMP1-1 exerts a protective effect against WIBL in rats, potentially by modulating 5-HT content and 5-HT-related metabolism in bone tissue through microbiota-gut-bone axis. This study is the first to elucidate the mechanism of AMP1-1 in mitigating WIBL through the perspective of the microbiota-gut-bone axis. Moreover, this research integrates plant extract research with the issue of bone loss induced by microgravity (aerospace medicine), thereby opening new avenues for natural drug research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2025.156447DOI Listing

Publication Analysis

Top Keywords

bone loss
16
5-ht content
12
microbiota-gut-bone axis
12
bone mass
12
gut microbiota
12
bone
10
peripheral 5-ht
8
intestinal barrier
8
fecal microbiota
8
amp1-1
7

Similar Publications

Background: Anticonvulsants are widely used in treating patients with mental and neurological disorders. Their long-term use increases the risk of a decrease in bone mineral density (BMD) and low-energy fractures. Despite the growing number of studies of drug-induced osteoporosis, the effect of anticonvulsants on bone microarchitecture remains poorly studied.

View Article and Find Full Text PDF

Hybrid two-stage CNN for detection and staging of periodontitis on panoramic radiographs.

J Oral Biol Craniofac Res

August 2025

Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.

Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.

View Article and Find Full Text PDF

Purpose: Acute graft-versus-host disease (aGVHD) is a significant cause of death in recipients of allogeneic hematopoietic stem cell transplantation. In this type of graft, the intestine is particularly affected, with the loss of intestinal barrier integrity playing a key role in its onset. In this scenario, the aim of the present research was to evaluate defibrotide, a heparin-like compound, marked for severe veno-occlusive disease, as an innovative therapeutic approach for restoring intestinal barrier integrity using an in vitro model and analyzing aGVHD patients' sera and clinical data.

View Article and Find Full Text PDF

Medication-related osteonecrosis of the jaw (MRONJ) is a rare but well-recognized complication of treatment with antiresorptive agents. Medication-related osteonecrosis of the external auditory canal (MROEAC), on the other hand, is even rarer and mostly reported during bisphosphonate exposure. Its pathophysiology is thought to involve complex multifactorial processes, including inhibition of bone remodeling, altered angiogenesis, infection, and inflammation.

View Article and Find Full Text PDF

Background: Emerging evidence indicates that lactase-mediated histone lactylation can activate osteogenic gene expression and promote bone formation. However, the role of lactylation-related genes (LRGs) in osteoporosis (OP) remains unclear. This study aims to clarify the key roles of LRGs and the molecular mechanisms of related biomarkers in OP.

View Article and Find Full Text PDF