98%
921
2 minutes
20
Cyclic-di-guanosine monophosphate (c-di-GMP) plays an important role in bacterial signalling networks. C-di-GMP exerts a regulatory function through binding to diverse molecules that include transcription factors, riboswitches and sensor kinases (SKs), thereby regulating diverse processes. Here, we demonstrate the crosstalk between c-di-GMP and the SK MtrB of . MtrB phosphorylates and regulates its cognate response regulator MtrA. C-di-GMP binds directly to the cytosolic domain of MtrB to inhibit its autophosphorylation. C-di-GMP levels in were manipulated by overexpressing a c-di-GMP synthesizing enzyme and a degrading enzyme . We demonstrate that overexpression of lowers growth of the bacterium both and in grown in macrophages. This is in conformity with lowered expression of and selected genes of the regulon involved in cell wall turnover in the -overexpressing strain compared to the parent strain. We also demonstrate that overexpression of in hinders biofilm formation, whereas overexpression of has the opposite effect. Neither of the two genes could rescue the biofilm defective phenotype of the MtrB knock out mutant (), suggesting that c-di-GMP exerts its role on biofilm formation through MtrB. Finally, we show by fluorescence microscopy that the trafficking of overexpressing is significantly higher than that of the parent strain and that this is linked to reduced expression of the MtrB-dependent genes and , which play a role in subversion of lysosomal trafficking of . These results provide important new insight into the crosstalk between c-di-GMP and MtrB in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282275 | PMC |
http://dx.doi.org/10.1099/mic.0.001532 | DOI Listing |
Philos Trans A Math Phys Eng Sci
September 2025
D-BAUG, ETH Zurich, Zürich 8093, Switzerland.
Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Department of Mathematical Sciences, University of Liverpool, Liverpool, UK.
Microswimmer locomotion in non-Newtonian fluids is crucial for biological processes, including infection, fertilization and biofilm formation. The behaviour of microswimmers in these media is an area with many conflicting results, with swimmers displaying varying responses depending on their morphology, actuation and the complex properties of the surrounding fluid. Using a hybrid computational approach, we numerically investigate the effect of shear-thinning rheology and viscoelasticity on a simple conceptual microswimmer consisting of three linked spheres.
View Article and Find Full Text PDFMycoses
September 2025
Grupo Infección e Inmunidad, Facultad Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia.
Background: Malassezia genus includes lipodependent commensal yeasts of humans and animals' skin and mucous membranes. It can cause dermatological pathologies, and azoles are mainly used for treatment. However, in vitro susceptibility testing has shown decreased sensitivity to these antifungals.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
The mechanisms by which vaginal microbiota shape spontaneous preterm birth (sPTB) risk remain poorly defined. Using electronic clinical records data from 74,913 maternities in conjunction with metaxanomic (n = 596) and immune profiling (n = 314) data, we show that the B blood group phenotype associates with increased risk of sPTB and adverse vaginal microbiota composition. The O blood group associates with sPTB in women who have a combination of a previous history of sPTB, an adverse vaginal microbial composition and pro-inflammatory cervicovaginal milieu.
View Article and Find Full Text PDFJ Prosthodont Res
September 2025
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Purpose: This study aimed to evaluate the performance of 3D-printed denture base resins (DBRs) compared with conventionally printed DBRs, examine their biofilm formation and physical properties, and determine the viability of 3D-printed DBRs as a superior alternative in removable prosthodontics.
Methods: The DBR samples were fabricated using traditional packing (TRA), milling (MIL), and 3D printing (3DP) methods. All samples were serially polished with an abrasive paper.