Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Backgroud: This study aimed to compare the intraoperative stability and early clinical outcomes of 40-mm diameter dual mobility (DM)-total hip arthroplasty (THA) with 36-mm ceramic head (large head) THA in active elderly patients with hip fractures.
Methods: A prospective randomized controlled trial was conducted from May 2022 to December 2022. Inclusion criteria were as follows: age ≥ 60 years, displaced femoral neck fracture, Koval grade 1 or 2, planned 54-mm acetabular component, and over 1-year follow-up. Intraoperative stability tests were performed on all patients (internal rotation at 45°, 60°, and 90° of hip fracture). Functional outcomes (Harris Hip Score and University of California, Los Angeles [UCLA] Score) were evaluated at 6 weeks and 3 months postoperatively. Gait analysis using artificial intelligence (AI) techniques was conducted at 3 months postoperatively.
Results: The study included 36 DM-THA patients (mean age, 69.6 ± 2.2 years; 44% women) and 37 large head THA patients (mean age, 69.6 ± 1.2 years; 64% women). No statistically significant differences were observed in functional outcomes and hip range of motion between the 2 groups. However, there was a significant difference in the gait speed and stance-swing phase of the large head THA group and the DM-THA group: the DM-THA group demonstrated superior gait speed (2.85 ± 0.83 kph vs. 2.04 ± 1.04 kph, = 0.003) and higher stance phase ratios (operated side: 63.57% ± 3.82% vs. 48.19% ± 5.50%, < 0.001; opposite side: 62.77% ± 2.27% vs. 49.93% ± 6.94%, < 0.001). In the stability test at 90° of hip flexion, the DM-THA group had a measurement of 48.40° ± 5.17°, while the large head THA group had a measurement of 30.94° ± 2.98° ( = 0.012). Despite the lack of statistical significance, the intraoperative stability test showed the dislocation angle was notably different between the groups in the hip flexion position of 60° (51.60° ± 6.09° in the DM-THA group and 40.00° ± 2.80° in the large head THA group, = 0.072).
Conclusions: Superior results were observed in the intraoperative stability test and early recovery of gait after DM-THA compared to large head THA. We believe that DM-THA can be a useful surgical option for THA in elderly patients with hip fractures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791493 | PMC |
http://dx.doi.org/10.4055/cios24148 | DOI Listing |