98%
921
2 minutes
20
Background And Objective: Colorectal cancer (CRC) is a complex disease with diverse genetic alterations and causes 10 % of cancer-related deaths worldwide. Understanding its molecular mechanisms is essential for identifying potential biomarkers and therapeutic targets for its effective management.
Methods: We integrated copy number alterations (CNA) and mutation data via their differentially expressed genes termed as candidate genes (CGs) computed using bioinformatics approaches. Then, using the CGs, we perform Weighted correlation network analysis (WGCNA) and utilise several hazard models such as Univariate Cox, Least Absolute Shrinkage and Selection Operator (LASSO) Cox and multivariate Cox to identify the key genes involved in CRC progression. We used different machine-learning models to demonstrate the discriminative power of selected hub genes among normal and CRC (early and late-stage) samples.
Results: The integration of CNA with mRNA expression identified over 3000 CGs, including CRC-specific driver genes like MYC and APC. In addition, pathway analysis revealed that the CGs are mainly enriched in endocytosis, cell cycle, wnt signalling and mTOR signalling pathways. Hazard models identified four key genes, CASP2, HCN4, LRRC69 and SRD5A1, that were significantly associated with CRC progression and predicted the 1-year, 3-years, and 5-years survival times. WGCNA identified seven hub genes: DSCC1, ETV4, KIAA1549, NOP56, RRS1, TEAD4 and ANKRD13B, which exhibited strong predictive performance in distinguishing normal from CRC (early and late-stage) samples.
Conclusions: Integrating regulatory information with gene expression improved early versus late-stage prediction. The identified potential prognostic and diagnostic biomarkers in this study may guide us in developing effective therapeutic strategies for CRC management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.140443 | DOI Listing |
Med Oncol
September 2025
Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
HepatoBiliaryPancreatic Surgery, AOU Careggi, Department of Experimental and Clinical Medicine (DMSC), University of Florence, Florence, Italy.
Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.
Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.
Biomed Environ Sci
August 2025
Gastrointestinal Disease Centre, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China.
Objective: To explore the correlation between chromosome 8 open reading frame 76 (C8orf76) and cyclin-dependent kinase 4 (CDK4) and the potential predictive effect of C8orf76 and CDK4 on the prognosis of colorectal cancer (CRC).
Methods: We constructed a protein-protein interaction network of C8orf76-related genes and analyzed the prognostic signatures of C8orf76 and CDK4. Clinicopathological features of C8orf76 and CDK4 were visualized using a nomogram.
Cancer Sci
September 2025
Department of Surgery, Asahikawa Medical University, Asahikawa, Japan.
Despite recent advances in neoadjuvant strategies for locally advanced rectal cancer (LARC), optimal chemotherapy regimens and the role of genetic biomarkers in guiding treatment remain unclear. Moreover, predictive markers are urgently needed for radiation-sparing strategies. Therefore, we aimed to assess the predictive and prognostic value of TP53, KRAS, and APC mutations in patients with LARC undergoing neoadjuvant chemotherapy (NACT) by retrospectively analyzing 43 patients with LARC who underwent NACT without radiation.
View Article and Find Full Text PDFCancer Med
September 2025
Department of Computer Engineering, Social and Biological Network Analysis Laboratory, University of Kurdistan, Sanandaj, Iran.
Background: Ovarian cancer (OC) remains the most lethal gynecological malignancy, largely due to its late-stage diagnosis and nonspecific early symptoms. Advances in biomarker identification and machine learning offer promising avenues for improving early detection and prognosis. This review evaluates the role of biomarker-driven ML models in enhancing the early detection, risk stratification, and treatment planning of OC.
View Article and Find Full Text PDF