Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Knowledge of the structures formed by proteins and small molecules is key to understand the molecular principles of chemotherapy and for designing new and more effective drugs. During the early stage of a drug discovery program, it is customary to predict ligand-protein complexes in silico, particularly when screening large compound databases. While virtual screening based on molecular docking is widely used for this purpose, it generally fails in mimicking binding events associated with large conformational changes in the protein, particularly when the latter involve multiple domains. In this work, we describe a new methodology to generate bound-like conformations of very flexible and allosteric proteins bearing multiple binding sites by exploiting only information on the unbound structure and the putative binding sites. The protocol is validated on the paradigm enzyme adenylate kinase, for which we generated a significant fraction of bound-like structures. A fraction of these conformations, employed in ensemble-docking calculations, allowed to find native-like poses of substrates and inhibitors (binding to the active form of the enzyme), as well as catalytically incompetent analogs (binding the inactive form). Our protocol provides a general framework for the generation of bound-like conformations of challenging drug targets that are suitable to host different ligands, demonstrating high sensitivity to the fine chemical details that regulate protein's activity. We foresee applications in virtual screening, in the prediction of the impact of amino acid mutations on structure and dynamics, and in protein engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863385PMC
http://dx.doi.org/10.1021/acs.jcim.4c01810DOI Listing

Publication Analysis

Top Keywords

binding events
8
flexible allosteric
8
virtual screening
8
bound-like conformations
8
binding sites
8
binding
5
prediction binding
4
events flexible
4
allosteric multidomain
4
multidomain proteins
4

Similar Publications

β-Adrenergic Receptors - Not Always Outside-In.

Physiology (Bethesda)

September 2025

Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304.

Canonical activation of G-protein coupled receptors (GPCRs) by hormone binding occurs at the plasma membrane, resulting in the diffusion of second messengers to intracellular effector sites throughout the cell. In contrast, recent evidence suggests that functional GPCRs can induce signaling from distinct intracellular domains, contributing to specificity in signaling. Functional adrenergic receptors have been identified at intracellular sites in the cardiac myocyte such as endosomes, the sarcoplasmic reticulum, the Golgi and the inner nuclear membrane.

View Article and Find Full Text PDF

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

BackgroundRAY1216 is an alpha-ketoamide-based peptide inhibitor of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) major protease (M). This study evaluated the absorption, distribution, metabolism and excretion of [C]-labelled RAY1216 by oral administration.Research design and methodsThis phase Ι study was designed to assess the pharmacokinetics, mass balance and metabolic pathways in 6 healthy Chinese adult men after a single fasting oral administration of 240 mL (containing 400 mg/100 μCi) [C] RAY1216.

View Article and Find Full Text PDF

The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.

View Article and Find Full Text PDF

Isatuximab is an IgG1k monoclonal antibody that binds with high affinity to CD38 expressed on plasma cells. Anti-CD38 antibodies have shown efficacy as monotherapy and in combination in a variety of settings for patients with multiple myeloma and light chain (AL) amyloidosis. This multi-center, cooperative group phase 2 trial was designed to evaluate hematologic response, organ response, and safety of isatuximab monotherapy for the treatment of relapsed AL amyloidosis.

View Article and Find Full Text PDF