Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: We previously demonstrated that exercise pretreatment can suppress oxidative stress and neuroinflammation following ischemic stroke. However, the specific mechanisms underlying these effects are uncertain. Sestrin2 (Sesn2), a stress-responsive protein, has been reported to reduce neuroinflammation and protect against ischemic cerebral injury. Hence, this study aimed to verify whether Sesn2 can mediate the antineuroinflammatory and antioxidative effects of exercise pretreatment and explore the potential downstream mechanisms involved.

Methods: To assess infarction volume and neuronal morphology, we employed HE staining. Neurological functions following ischemic stroke were evaluated via modified neurological severity scores. Techniques such as immunofluorescence, TUNEL, Fluoro-Jade B, dihydroethidium staining, and Western blotting were utilized to investigate neuronal injury, oxidative stress, neuroinflammation, autophagic flux, and signaling pathway molecules.

Results: Our findings revealed that in a middle cerebral artery occlusion (MCAO) mouse model, administration of Sesn2 shRNA abolished the neuroprotective effects induced by exercise pretreatment. These effects include improvements in neurological dysfunction and impaired autophagy, as well as a reduction in oxidative stress and neuroinflammation. Mechanistically, the administration of AICAR to activate the AMPK/TFEB signaling pathway significantly reversed the aforementioned effects. Moreover, the inhibition of autophagic flux by chloroquine (CQ) in MCAO mice pretreated with exercise led to increased neuroinflammation.

Conclusions: Sesn2 contributes to the positive outcomes of exercise pretreatment for ischemic stroke. Sesn2 exerts neuroprotection by inhibiting oxidative stress and neuroinflammation, potentially through AMPK/TFEB-mediated autophagic flux in MCAO. Sesn2 may hold promise as a novel exercise-mimetic molecule and a potential target for therapeutic interventions in ischemic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2025.115174DOI Listing

Publication Analysis

Top Keywords

ischemic stroke
20
autophagic flux
16
exercise pretreatment
16
oxidative stress
16
stress neuroinflammation
16
signaling pathway
8
ischemic
6
sesn2
6
stroke
5
exercise
5

Similar Publications

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF

Kidney stone disease increases the risk of cardiovascular events.

PLoS One

September 2025

Department of Cardiology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, Fujian, China.

Introduction: Kidney stone disease is associated with numerous cardiovascular risk factors. However, the findings across studies are non-uniformly consistent, and the control of confounding variables remains suboptimal. This study aimed to investigate the association between kidney stone and cardiovascular disease.

View Article and Find Full Text PDF

Arterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.

View Article and Find Full Text PDF

Background: The benefits of rehabilitation in acute ischemic stroke patients following thrombectomy remain underexplored. We assessed which activities of daily living (ADLs) show the greatest improvement after goal-directed therapy in an inpatient rehabilitation setting.

Methods: We retrospectively analyzed pre- and post-rehabilitation functional assessments in 40 acute ischemic stroke patients treated with mechanical thrombectomy.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.

View Article and Find Full Text PDF